咨询与建议

限定检索结果

文献类型

  • 596 篇 期刊文献
  • 335 篇 会议

馆藏范围

  • 931 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 580 篇 工学
    • 362 篇 计算机科学与技术...
    • 301 篇 软件工程
    • 115 篇 生物医学工程(可授...
    • 105 篇 生物工程
    • 103 篇 信息与通信工程
    • 92 篇 控制科学与工程
    • 72 篇 电气工程
    • 64 篇 光学工程
    • 45 篇 电子科学与技术(可...
    • 37 篇 机械工程
    • 27 篇 仪器科学与技术
    • 27 篇 材料科学与工程(可...
    • 25 篇 化学工程与技术
    • 15 篇 建筑学
    • 15 篇 交通运输工程
    • 15 篇 安全科学与工程
  • 409 篇 理学
    • 191 篇 数学
    • 164 篇 生物学
    • 85 篇 物理学
    • 50 篇 统计学(可授理学、...
    • 44 篇 系统科学
    • 27 篇 化学
  • 168 篇 管理学
    • 96 篇 管理科学与工程(可...
    • 77 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 146 篇 医学
    • 126 篇 临床医学
    • 72 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
    • 16 篇 公共卫生与预防医...
  • 22 篇 法学
    • 20 篇 社会学
  • 21 篇 教育学
  • 13 篇 农学
  • 10 篇 经济学
  • 7 篇 文学
  • 3 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 28 篇 electroencephalo...
  • 27 篇 feature extracti...
  • 21 篇 deep learning
  • 21 篇 training
  • 21 篇 multiobjective o...
  • 17 篇 neural networks
  • 16 篇 machine learning
  • 14 篇 reinforcement le...
  • 11 篇 task analysis
  • 11 篇 optimization
  • 11 篇 brain-computer i...
  • 11 篇 evolutionary com...
  • 10 篇 deep neural netw...
  • 10 篇 generative adver...
  • 10 篇 brain modeling
  • 10 篇 clustering algor...
  • 9 篇 object detection
  • 9 篇 three-dimensiona...
  • 9 篇 convolution
  • 9 篇 semantics

机构

  • 98 篇 guangdong provin...
  • 34 篇 institute of sci...
  • 33 篇 department of co...
  • 33 篇 nanhu brain-comp...
  • 24 篇 beijing advanced...
  • 23 篇 southern univers...
  • 23 篇 college of compu...
  • 23 篇 research institu...
  • 22 篇 department of co...
  • 16 篇 shanghai key lab...
  • 16 篇 henan key labora...
  • 15 篇 ji hua laborator...
  • 15 篇 guangdong provin...
  • 14 篇 key laboratory o...
  • 14 篇 research center ...
  • 13 篇 shanghai center ...
  • 13 篇 university of ch...
  • 12 篇 the guangdong pr...
  • 12 篇 school of automa...
  • 12 篇 the state key la...

作者

  • 50 篇 ishibuchi hisao
  • 35 篇 yao xin
  • 33 篇 tang ke
  • 22 篇 pang lie meng
  • 21 篇 liu shengcai
  • 20 篇 shang ke
  • 20 篇 nan yang
  • 18 篇 hisao ishibuchi
  • 18 篇 liu jialin
  • 14 篇 shu tianye
  • 14 篇 yang peng
  • 13 篇 jianfeng feng
  • 13 篇 feng jianfeng
  • 13 篇 xin yao
  • 12 篇 cheng ran
  • 12 篇 zhang junping
  • 12 篇 yang nan
  • 11 篇 zhang yangsong
  • 11 篇 pan gang
  • 11 篇 shan hongming

语言

  • 864 篇 英文
  • 50 篇 其他
  • 20 篇 中文
  • 1 篇 法文
检索条件"机构=The Henan Key Laboratory of Brain Science and Brain Computer Interface Technology"
931 条 记 录,以下是401-410 订阅
排序:
Clustering-based subset selection in evolutionary multiobjective optimization
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Weiyu Ishibuchi, Hisao Shang, Ke Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Subset selection is an important component in evolutionary multiobjective optimization (EMO) algorithms. Clustering, as a classic method to group similar data points together, has been used for subset selection in som... 详细信息
来源: 评论
Benchmarking Subset Selection from Large Candidate Solution Sets in Evolutionary Multi-objective Optimization
arXiv
收藏 引用
arXiv 2022年
作者: Shang, Ke Shu, Tianye Ishibuchi, Hisao Nan, Yang Pang, Lie Meng Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
In the evolutionary multi-objective optimization (EMO) field, the standard practice is to present the final population of an EMO algorithm as the output. However, it has been shown that the final population often incl... 详细信息
来源: 评论
Multi-objective neural architecture search with almost no training
arXiv
收藏 引用
arXiv 2020年
作者: Hu, Shengran Cheng, Ran He, Cheng Lu, Zhichao Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
In the recent past, neural architecture search (NAS) has attracted increasing attention from both academia and industries. Despite the steady stream of impressive empirical results, most existing NAS algorithms are co... 详细信息
来源: 评论
Learning to approximate: Auto direction vector set generation for hypervolume contribution approximation
arXiv
收藏 引用
arXiv 2022年
作者: Shang, Ke Shu, Tianye Ishibuchi, Hisao Guangdong Provincial Key Laboratory Of Brain-inspired Intelligent Computation Department Of Computer Science And Engineering Southern University Of Science And Technology Shenzhen518055 China
Hypervolume contribution is an important concept in evolutionary multi-objective optimization (EMO). It involves in hypervolume-based EMO algorithms and hypervolume subset selection algorithms. Its main drawback is th... 详细信息
来源: 评论
Lazy Greedy Hypervolume Subset Selection from Large Candidate Solution Sets
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Weiyu Ishibuchi, Hisao Shang, Ke Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Subset selection is a popular topic in recent years and a number of subset selection methods have been proposed. Among those methods, hypervolume subset selection is widely used. Greedy hypervolume subset selection al... 详细信息
来源: 评论
Effects of Archive Size on Computation Time and Solution Quality for Multi-Objective Optimization
arXiv
收藏 引用
arXiv 2022年
作者: Shu, Tianye Shang, Ke Ishibuchi, Hisao Nan, Yang Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
An unbounded external archive has been used to store all nondominated solutions found by an evolutionary multiobjective optimization algorithm in some studies. It has been shown that a selected solution subset from th... 详细信息
来源: 评论
Power transformer fault diagnosis considering data imbalance and data set fusion
收藏 引用
High Voltage 2021年 第3期6卷 543-554页
作者: Yang Zhang Hong Cai Chen Yaping Du Min Chen Jie Liang Jianhong Li Xiqing Fan Xin Yao Department of Building Service Engineering Hong Kong Polytechnic UniversityHong KongChina Academy for Advanced Interdisciplinary Studies and Department of Electrical and Electronic Engineering Southern University of Science and TechnologyShenzhenChina Research Institute State Grid Zhejiang Electric Power Co.LtdHangzhouChina Zhejiang Huayun Information Technology Co. LtdHangzhouChina State Grid Zhejiang Electric Power Co. LtdLishui Power Supply BureauLishuiChina Guangdong Provincial Key Laboratory of Brain‐inspired Intelligent Computation Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
Improving the accuracy of transformer dissolved gas analysis is always an important demand for power ***,the requirement for large numbers of fault samples becomes an obstacle to this *** article creatively uses a lar... 详细信息
来源: 评论
Non-Invasive brain-computer interfaces: a New Perspective on the Assessment and Classification of Individuals with Methamphetamine Addiction
收藏 引用
SN Comprehensive Clinical Medicine 2023年 第1期5卷 1-12页
作者: Zhan, Gege Su, Haolong Wang, Pengchao Wang, Junkongshuai Jiang, Haifeng Zhang, Lihua Kang, Xiaoyang Laboratory for Neural Interface and Brain Computer Interface Engineering Research Center of AI & Robotics Ministry of Education Shanghai Engineering Research Center of AI & Robotics MOE Frontiers Center for Brain Science State Key Laboratory of Medical Neurobiology Institute of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China Shanghai Mental Center Shanghai Jiao Tong University School of Medicine Shanghai China CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT) Chinese Academy of Sciences Shanghai China Ji Hua Laboratory Foshan Guangdong Province China Yiwu Research Institute of Fudan University Yiwu City China
Methamphetamine addiction is a brain disease that causes abnormalities in the structure and function of the brain. EEG, a common signal acquired based on the noninvasive brain-computer interface, can reflect the alter...
来源: 评论
Gridless evolutionary approach for line spectral estimation with unknown model order
arXiv
收藏 引用
arXiv 2021年
作者: Yan, Bai Zhao, Qi Zhang, Jin Andrew Zhang, J. Yao, Xin Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China School of Computer Science and Technology University of Science and Technology of China Hefei230027 China Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China University of Technology SydneyNSW2007 Australia
—Gridless methods show great superiority in line spectral estimation. These methods need to solve an atomic l0 norm (i.e., the continuous analog of l0 norm) minimization problem to estimate frequencies and model orde... 详细信息
来源: 评论
DG-CNN:Introducing Margin Information into Convolutional Neural Networks for Breast Cancer Diagnosis in Ultrasound Images
收藏 引用
Journal of computer science & technology 2022年 第2期37卷 277-294页
作者: Xiao-Zheng Xie Jian-Wei Niu Senior Member Xue-Feng Liu Qing-Feng Li Yong Wang Jie Han Shaojie Tang State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang UniversityBeijing 100191China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang UniversityHangzhou 310051China Department of Diagnostic Ultrasound National Cancer CenterChinese Academy of Medical SciencesPeking Union Medical CollegeBeijing 100021China Naveen Jindal School of Management The University of Texas at DallasRichardsonTX 75080-3021U.S.A.
Although using convolutional neural networks(CNNs)for computer-aided diagnosis(CAD)has made tremendous progress in the last few years,the small medical datasets remain to be the major bottleneck in this *** address th... 详细信息
来源: 评论