咨询与建议

限定检索结果

文献类型

  • 590 篇 期刊文献
  • 338 篇 会议

馆藏范围

  • 928 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 570 篇 工学
    • 357 篇 计算机科学与技术...
    • 298 篇 软件工程
    • 112 篇 生物医学工程(可授...
    • 105 篇 生物工程
    • 101 篇 信息与通信工程
    • 87 篇 控制科学与工程
    • 67 篇 电气工程
    • 65 篇 光学工程
    • 44 篇 电子科学与技术(可...
    • 36 篇 机械工程
    • 28 篇 化学工程与技术
    • 27 篇 仪器科学与技术
    • 25 篇 材料科学与工程(可...
    • 15 篇 建筑学
    • 15 篇 安全科学与工程
    • 14 篇 土木工程
    • 14 篇 交通运输工程
  • 401 篇 理学
    • 189 篇 数学
    • 159 篇 生物学
    • 84 篇 物理学
    • 48 篇 统计学(可授理学、...
    • 43 篇 系统科学
    • 27 篇 化学
  • 167 篇 管理学
    • 96 篇 管理科学与工程(可...
    • 75 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 145 篇 医学
    • 125 篇 临床医学
    • 67 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 22 篇 法学
    • 20 篇 社会学
  • 17 篇 教育学
  • 12 篇 农学
  • 10 篇 经济学
  • 7 篇 文学
  • 3 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 28 篇 electroencephalo...
  • 27 篇 feature extracti...
  • 23 篇 deep learning
  • 21 篇 training
  • 21 篇 multiobjective o...
  • 17 篇 neural networks
  • 16 篇 machine learning
  • 14 篇 reinforcement le...
  • 11 篇 task analysis
  • 11 篇 optimization
  • 11 篇 brain-computer i...
  • 11 篇 evolutionary com...
  • 10 篇 deep neural netw...
  • 10 篇 generative adver...
  • 10 篇 brain modeling
  • 10 篇 clustering algor...
  • 9 篇 object detection
  • 9 篇 three-dimensiona...
  • 9 篇 convolution
  • 9 篇 semantics

机构

  • 98 篇 guangdong provin...
  • 33 篇 department of co...
  • 32 篇 institute of sci...
  • 27 篇 nanhu brain-comp...
  • 24 篇 beijing advanced...
  • 23 篇 southern univers...
  • 23 篇 college of compu...
  • 23 篇 research institu...
  • 22 篇 department of co...
  • 17 篇 shanghai key lab...
  • 16 篇 henan key labora...
  • 15 篇 ji hua laborator...
  • 15 篇 guangdong provin...
  • 14 篇 key laboratory o...
  • 14 篇 research center ...
  • 13 篇 shanghai center ...
  • 13 篇 university of ch...
  • 12 篇 the guangdong pr...
  • 12 篇 school of automa...
  • 11 篇 peng cheng labor...

作者

  • 50 篇 ishibuchi hisao
  • 35 篇 yao xin
  • 33 篇 tang ke
  • 22 篇 pang lie meng
  • 21 篇 liu shengcai
  • 20 篇 shang ke
  • 20 篇 nan yang
  • 18 篇 hisao ishibuchi
  • 18 篇 liu jialin
  • 14 篇 shu tianye
  • 14 篇 yang peng
  • 13 篇 jianfeng feng
  • 13 篇 xin yao
  • 12 篇 cheng ran
  • 12 篇 zhang junping
  • 12 篇 yang nan
  • 11 篇 zhang yangsong
  • 11 篇 pan gang
  • 11 篇 feng jianfeng
  • 11 篇 shan hongming

语言

  • 862 篇 英文
  • 49 篇 其他
  • 20 篇 中文
  • 1 篇 法文
检索条件"机构=The Henan Key Laboratory of Brain Science and Brain Computer Interface Technology"
928 条 记 录,以下是451-460 订阅
排序:
SuperVessel: Segmenting High-resolution Vessel from Low-resolution Retinal Image
arXiv
收藏 引用
arXiv 2022年
作者: Hu, Yan Qiu, Zhongxi Zeng, Dan Jiang, Li Lin, Chen Liu, Jiang Research Institute of Trustworthy Autonomous Systems Department of Computer Science and Technology Southern University of Science and Technology Shenzhen518055 China China Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Vascular segmentation extracts blood vessels from images and serves as the basis for diagnosing various diseases, like ophthalmic diseases. Ophthalmologists often require high-resolution segmentation results for analy... 详细信息
来源: 评论
Dynamic and low-dimensional modeling of brain functional connectivity on Riemannian manifolds
收藏 引用
NeuroImage 2025年 314卷 121243-121243页
作者: Wang, Mingyu Wang, Yueming Yang, Yuxiao MOE Frontier Science Center for Brain Science and Brain-machine Integration Zhejiang University Hangzhou China Nanhu Brain-computer Interface Institute Hangzhou China School of Computer Science and Technology Zhejiang University Hangzhou China State Key Laboratory of Brain-machine Intelligence Zhejiang University Hangzhou China Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
Modeling brain functional connectivity (FC) is key in investigating brain functions and dysfunctions. FC is typically quantified by symmetric positive definite (SPD) matrices that are located on a Riemannian manifold ... 详细信息
来源: 评论
Constrained Reinforcement Learning for Dynamic Material Handling
Constrained Reinforcement Learning for Dynamic Material Hand...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Chengpeng Hu Ziming Wang Jialin Liu Junyi Wen Bifei Mao Xin Yao Research Institute of Trustworthy Autonomous Systems (RITAS) Southern University of Science and Technology Shenzhen China Department of Computer Science and Engineering Guangdong Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China Trustworthiness Theory Research Center Huawei Technologies Co. Ltd Shenzhen China
As one of the core parts of flexible manufacturing systems, material handling involves storage and transportation of materials between workstations with automated vehicles. The improvement in material handling can imp...
来源: 评论
Lamarckian Platform: Pushing the Boundaries of Evolutionary Reinforcement Learning towards Asynchronous Commercial Games
arXiv
收藏 引用
arXiv 2022年
作者: Bai, Hui Shen, Ruimin Lin, Yue Xu, Botian Cheng, Ran The Guangdong Key Laboratory of Brain-Inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China The NetEase Games Ai Lab Guangzhou510653 China
Despite the emerging progress of integrating evolutionary computation into reinforcement learning, the absence of a high-performance platform endowing composability and massive parallelism causes non-trivial difficult... 详细信息
来源: 评论
Enhancing Motor Imagery EEG Signal Classification with Simplified GoogLeNet
Enhancing Motor Imagery EEG Signal Classification with Simpl...
收藏 引用
International Winter Workshop on brain-computer interface (BCI)
作者: Lu Wang Junkongshuai Wang Bo Wen Wei Mu Lusheng Liu Jiaguan Han Lihua Zhang Jie Jia Xiaoyang Kang Shanghai Engineering Research Center of AI & Robotics MOE Frontiers Center for Brain Science State Key Laboratory of Medical NeurobiologyAcademy for Engineering & Technology Laboratory for Neural Interface and Brain Computer Interface Engineering Research Center of AI & Robotics Ministry of Education Institute of AI & Robotics Institute of Meta-MedicalFudan University Shanghai China Ji Hua Laboratory Guangdong Province Foshan China Yiwu Research Institute of Fudan University Chengbei Road Yiwu City Zhejiang China Department of Rehabilitation Medicine Huashan Hospital Fudan University Shanghai China Research Center for Intelligent Sensing Zhejiang Lab Hangzhou China
The brain-computer interface is a novel tool for interaction between the brain and external devices, and is an important tool at the forefront of international brain science research. Motor imagery does not require ex... 详细信息
来源: 评论
Tagging Continuous Labels for EEG-based Emotion Classification
Tagging Continuous Labels for EEG-based Emotion Classificati...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Rong-Fei Gu Li-Ming Zhao Wei-Long Zheng Bao-Liang Lu Department of Computer Science and Engineering Center for Brain-Like Computing and Machine Intelligence the Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering and Brain Science and Technology Research Center Shanghai Jiao Tong University Shanghai People’s Republic of China RuiJin-Mihoyo Laboratory Clinical Neuroscience Center RuiJin Hospital Shanghai Jiao Tong University School of Medicine Shanghai People’s Republic of China
EEG-based emotion classification has long been a critical task in the field of affective brain-computer interface (aBCI). The majority of leading researches construct supervised learning models based on labeled datase...
来源: 评论
Dynamic network embedding via incremental skip-gram with negative sampling
收藏 引用
science China(Information sciences) 2020年 第10期63卷 89-107页
作者: Hao PENG Jianxin LI Hao YAN Qiran GONG Senzhang WANG Lin LIU Lihong WANG Xiang REN Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University State Key Laboratory of Software Development Environment Beihang University Collage of Computer Science and Technology Nanjing University of Aeronautics and Astronautics National Computer Network Emergency Response Technical Team/Coordination Center of China Department of Computer Science University of Southern California
Network representation learning, as an approach to learn low dimensional representations of vertices, has attracted considerable research attention recently. It has been proven extremely useful in many machine learnin... 详细信息
来源: 评论
A Multi-Model Framework to Explore ADHD Diagnosis from Neuroimaging Data
收藏 引用
Journal of Data science 2024年 第2期22卷 191-207页
作者: Ozdemir, Yagmur Yavuz Nukala, Naga Chandra Padmini Molinari, Roberto Deshpande, Gopikrishna Department of Mathematics and Statistics Auburn University Auburn AL United States AU MRI Research Center Department of Electrical and Computer Engineering Auburn University Auburn AL United States Department of Psychological Sciences Auburn University Auburn AL United States Alabama Advanced Imaging Consortium Auburn AL United States Center for Neuroscience Auburn University Auburn AL United States School of Psychology Capital Normal University Beijing China Key Laboratory for Learning and Cognition Capital Normal University Beijing China Department of Psychiatry National Institute of Mental Health and Neurosciences Karnataka India Centre for Brain Research Indian Institute of Science Bangalore India Department of Heritage Science and Technology Indian Institute of Technology Hyderabad India
Attention Deficit Hyperactivity Disorder (ADHD) is a frequent neurodevelopmental disorder in children that is commonly diagnosed subjectively. The objective detection of ADHD based on neuroimaging data has been a comp... 详细信息
来源: 评论
Electromyography-Based Intentional-Deception Behavior Analysis in an Interactive Social Context: Statistical Analysis and Machine Learning
SSRN
收藏 引用
SSRN 2023年
作者: Dong, Zizhao Li, Jingting Yang, Xingpeng Guo, Changfu Lu, Shaoyuan Wang, Su-Jing Fu, Xiaolan CAS Key Laboratory of Behavioral Science Institute of Psychology Beijing100101 China Department of Psychology University of the Chinese Academy of Sciences Beijing101408 China School of Computer Science Jiangsu University of Science and Technology Zhenjiang212003 China School of Psychology Capital Normal University Beijing100048 China State Key Laboratory of Brain and Cognitive Science Institute of Psychology CAS Beijing100101 China
Lying is a common social behavior, and accurate lie detection is crucial in areas such as national security. However, existing lie detection techniques have certain limitations. Therefore, more accurate and reliable t... 详细信息
来源: 评论
Provably Convergent Subgraph-wise Sampling for Fast GNN Training
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Jie Shi, Zhihao Liang, Xize Lian, Defu Ji, Shuiwang Li, Bin Chen, Enhong Wu, Feng MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition University of Science and Technology of China Hefei230027 China CAS Key Laboratory of Technology in GIPAS University of Science and Technology of China Hefei230027 China Institute of Artificial Intelligence Hefei Comprehensive National Science Center Hefei230091 China University of Science and Technology of China Hefei230027 China The Department of Computer Science and Engineering Texas A&M University College StationTX77843 United States
Subgraph-wise sampling—a promising class of mini-batch training techniques for graph neural networks (GNNs)—is critical for real-world applications. During the message passing (MP) in GNNs, subgraph-wise sampling me... 详细信息
来源: 评论