咨询与建议

限定检索结果

文献类型

  • 585 篇 期刊文献
  • 335 篇 会议

馆藏范围

  • 920 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 567 篇 工学
    • 358 篇 计算机科学与技术...
    • 299 篇 软件工程
    • 112 篇 生物医学工程(可授...
    • 105 篇 生物工程
    • 100 篇 信息与通信工程
    • 88 篇 控制科学与工程
    • 67 篇 电气工程
    • 65 篇 光学工程
    • 44 篇 电子科学与技术(可...
    • 37 篇 机械工程
    • 28 篇 化学工程与技术
    • 27 篇 仪器科学与技术
    • 25 篇 材料科学与工程(可...
    • 15 篇 建筑学
    • 15 篇 安全科学与工程
    • 14 篇 土木工程
    • 14 篇 交通运输工程
  • 399 篇 理学
    • 189 篇 数学
    • 157 篇 生物学
    • 84 篇 物理学
    • 48 篇 统计学(可授理学、...
    • 43 篇 系统科学
    • 27 篇 化学
  • 167 篇 管理学
    • 97 篇 管理科学与工程(可...
    • 75 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 141 篇 医学
    • 122 篇 临床医学
    • 66 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 22 篇 法学
    • 20 篇 社会学
  • 16 篇 教育学
  • 12 篇 农学
  • 10 篇 经济学
  • 7 篇 文学
  • 3 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 28 篇 electroencephalo...
  • 27 篇 feature extracti...
  • 22 篇 deep learning
  • 21 篇 training
  • 21 篇 multiobjective o...
  • 17 篇 neural networks
  • 16 篇 machine learning
  • 14 篇 reinforcement le...
  • 11 篇 task analysis
  • 11 篇 optimization
  • 11 篇 brain-computer i...
  • 11 篇 evolutionary com...
  • 10 篇 deep neural netw...
  • 10 篇 generative adver...
  • 10 篇 brain modeling
  • 10 篇 clustering algor...
  • 9 篇 object detection
  • 9 篇 three-dimensiona...
  • 9 篇 convolution
  • 9 篇 semantics

机构

  • 98 篇 guangdong provin...
  • 33 篇 department of co...
  • 32 篇 institute of sci...
  • 28 篇 nanhu brain-comp...
  • 24 篇 beijing advanced...
  • 23 篇 southern univers...
  • 23 篇 research institu...
  • 22 篇 department of co...
  • 22 篇 college of compu...
  • 16 篇 shanghai key lab...
  • 16 篇 henan key labora...
  • 15 篇 ji hua laborator...
  • 15 篇 guangdong provin...
  • 14 篇 key laboratory o...
  • 14 篇 research center ...
  • 13 篇 shanghai center ...
  • 13 篇 university of ch...
  • 12 篇 the guangdong pr...
  • 12 篇 school of automa...
  • 12 篇 department of au...

作者

  • 50 篇 ishibuchi hisao
  • 35 篇 yao xin
  • 33 篇 tang ke
  • 22 篇 pang lie meng
  • 21 篇 liu shengcai
  • 20 篇 shang ke
  • 20 篇 nan yang
  • 18 篇 hisao ishibuchi
  • 18 篇 liu jialin
  • 14 篇 shu tianye
  • 14 篇 yang peng
  • 13 篇 jianfeng feng
  • 13 篇 xin yao
  • 12 篇 cheng ran
  • 12 篇 zhang junping
  • 12 篇 yang nan
  • 11 篇 zhang yangsong
  • 11 篇 pan gang
  • 11 篇 feng jianfeng
  • 11 篇 shan hongming

语言

  • 854 篇 英文
  • 49 篇 其他
  • 20 篇 中文
  • 1 篇 法文
检索条件"机构=The Henan Key Laboratory of Brain Science and Brain Computer Interface Technology"
920 条 记 录,以下是71-80 订阅
排序:
Perivascular spaces relate to the course and cognition of Huntington’s disease
收藏 引用
Translational Neurodegeneration 2023年 第1期12卷 546-549页
作者: Xiao-Yan Li Juan-Juan Xie Jin-Hong Wang Yu-Feng Bao Yi Dong Bin Gao Ting Shen Pei-Yu Huang Hao-Chao Ying Han Xu Anna Wang Roe Hsin-Yi Lai Zhi-Ying Wu Department of Medical Genetics and Center for Rare Diseases Department of Neurology in Second Affiliated HospitalKey Laboratory of Medical Neurobiology of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina Interdisciplinary Institute of Neuroscience and Technology College of Biomedical Engineering and Instrument ScienceKey Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhouChina College of Computer Science and Technology Zhejiang UniversityHangzhouChina Department of Radiology Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina School of Public Health Zhejiang UniversityHangzhouChina MOE Frontier Science Center for Brain Research and Brain-Machine Integration School of Brain Science and Brain MedicineZhejiang UniversityHangzhouChina CAS Center for Excellence in Brain Science and Intelligence Technology ShanghaiChina
Huntington’s disease(HD)is an autosomal dominant neurodegenerative disease that is caused by a cytosine-adenine-guanine(CAG)expansion in the first exon of the huntingtin(HTT)gene,which codes for the hun-tingtin *** t... 详细信息
来源: 评论
Multi-objective evolutionary optimization for hardware-aware neural network pruning
收藏 引用
Fundamental Research 2024年 第4期4卷 941-950页
作者: Wenjing Hong Guiying Li Shengcai Liu Peng Yang Ke Tang Guangdong Provincial Key Laboratory of Brain-Inspired Inteligent Computation Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhen 518055China Research Institute of Trustworthy Autonomous Systems Southern University of Science and TechnologyShenzhen 518055China Department of Statistics and Data Science Southern University of Science and TechnologyShenzhen 518055China
Neural network pruning is a popular approach to reducing the computational complexity of deep neural *** recent years,as growing evidence shows that conventional network pruning methods employ inappropriate proxy metr... 详细信息
来源: 评论
How to Find a Large Solution Set to Cover the Entire Pareto Front in Evolutionary Multi-Objective Optimization
How to Find a Large Solution Set to Cover the Entire Pareto ...
收藏 引用
2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
作者: Pang, Lie Meng Nan, Yang Ishibuchi, Hisao Southern University of Science and Technology Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Shenzhen518055 China
Recently, it has been pointed out in many studies that the performance of evolutionary multi-objective optimization (EMO) algorithms can be improved by selecting solutions from all examined solutions stored in an unbo... 详细信息
来源: 评论
Two-Stage Lazy Greedy Inclusion Hypervolume Subset Selection for Large-Scale Problem
Two-Stage Lazy Greedy Inclusion Hypervolume Subset Selection...
收藏 引用
2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
作者: Nan, Yang Shu, Tianye Ishibuchi, Hisao Southern University of Science and Technology Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Shenzhen518055 China
Hypervolume subset selection (HSS) is a hot topic in the evolutionary multi-objective optimization (EMO) community since hypervolume is the most widely-used performance indicator. In the literature, most HSS algorithm... 详细信息
来源: 评论
SelfAlign: Achieving Subtomogram Alignment with Self-Supervised Deep Learning
SelfAlign: Achieving Subtomogram Alignment with Self-Supervi...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Wang, Xuan Cao, Haofan Wang, Xinsheng Wan, Xiaohua Zhang, Fa Donghua University School of Computer Science and Technology Shanghai China Key Laboratory of Brain Health Intelligent Evaluation and Intervention Beijing China Beijing Institute of Technology School of Medical Technology Beijing China
Cryo-Electron Tomography (Cryo-ET) and subtomogram averaging (STA) have been instrumental in advancing the analysis of high-resolution structural biology, enabling detailed insights into macromolecular complexes. Howe... 详细信息
来源: 评论
Two-Stage Greedy Approximated Hypervolume Subset Selection for Large-Scale Problems  12th
Two-Stage Greedy Approximated Hypervolume Subset Selection f...
收藏 引用
12th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2023
作者: Nan, Yang Ishibuchi, Hisao Shu, Tianye Shang, Ke Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Recently, it has been demonstrated that a solution set that is better than the final population can be obtained by subset selection in some studies on evolutionary multi-objective optimization. The main challenge in t... 详细信息
来源: 评论
Innovative 3D CTF Correction Techniques for Cryo-ET of Individual Particles
Innovative 3D CTF Correction Techniques for Cryo-ET of Indiv...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Wang, Xuan Liu, Shiwei Wang, Xinsheng Wan, Xiaohua Zhang, Fa Donghua University School of Computer Science and Technology Shanghai China Key Laboratory of Brain Health Intelligent Evaluation and Intervention Beijing China Beijing Institute of Technology School of Medical Technology Beijing China
Cryo-electron tomography (Cryo-ET) and subtomogram averaging techniques are highly effective in revealing high-resolution molecular structures. In this technique, accurate Contrast Transfer Function (CTF) correction i... 详细信息
来源: 评论
Performance Evaluation of Multi-objective Evolutionary Algorithms Using Artificial and Real-world Problems  12th
Performance Evaluation of Multi-objective Evolutionary Algor...
收藏 引用
12th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2023
作者: Ishibuchi, Hisao Nan, Yang Pang, Lie Meng Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Performance of evolutionary multi-objective optimization (EMO) algorithms is usually evaluated using artificial test problems such as DTLZ and WFG. Every year, new EMO algorithms with high performance on those test pr... 详细信息
来源: 评论
Research on EEG Signal Classification Method Based on brain-computer interface Control of Rehabilitation Robot  17
Research on EEG Signal Classification Method Based on Brain-...
收藏 引用
17th International Convention on Rehabilitation Engineering and Assistive technology, i-CREATe 2024
作者: Zhang, Yiwen Wang, Wenzhi Liu, Gan Qiao, Yi Shi, Ruochuan Duan, Yahan Du, Ying Li, Sining Guo, Fengrui McHugh, Thomas John Duan, Feng Nankai University Tianjin key Laboratory of Interventional Brain-Computer Interface and Intelligent Rehabilitation No.38 Tongyan Road Tianjin300350 China Riken Center for Brain Science Laboratory for Circuit and Behavioral Physiology Wakoshi Saitama Japan Graduate School of Arts and Sciences The University of Tokyo Department of Life Sciences Tokyo Japan
brain-computer interface (BCI) control of multiple rehabilitation robots provides a novel type of human-robot interaction and an important research direction in the field of intelligent rehabilitation. However, most c... 详细信息
来源: 评论
Microstimulation-based path tracking control of pigeon robots through parameter adaptive strategy
收藏 引用
Heliyon 2024年 第19期10卷 e38113页
作者: Huang, Yinggang Yang, Lifang Yang, Long Xu, Zehua Li, Mengmeng Shang, Zhigang School of Electrical and Information Engineering Zhengzhou University Zhengzhou 450001 China Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology Zhengzhou 450001 China
Research on animal robots utilizing neural electrical stimulation is a significant focus within the field of neuro-control, though precise behavior control remains challenging. This study proposes a parameter-adaptive... 详细信息
来源: 评论