咨询与建议

限定检索结果

文献类型

  • 597 篇 期刊文献
  • 335 篇 会议

馆藏范围

  • 932 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 582 篇 工学
    • 363 篇 计算机科学与技术...
    • 303 篇 软件工程
    • 118 篇 生物医学工程(可授...
    • 106 篇 生物工程
    • 105 篇 信息与通信工程
    • 92 篇 控制科学与工程
    • 75 篇 电气工程
    • 64 篇 光学工程
    • 45 篇 电子科学与技术(可...
    • 36 篇 机械工程
    • 29 篇 仪器科学与技术
    • 27 篇 化学工程与技术
    • 26 篇 材料科学与工程(可...
    • 16 篇 建筑学
    • 15 篇 土木工程
    • 15 篇 交通运输工程
  • 401 篇 理学
    • 188 篇 数学
    • 159 篇 生物学
    • 84 篇 物理学
    • 50 篇 统计学(可授理学、...
    • 44 篇 系统科学
    • 26 篇 化学
  • 167 篇 管理学
    • 96 篇 管理科学与工程(可...
    • 76 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 142 篇 医学
    • 124 篇 临床医学
    • 71 篇 基础医学(可授医学...
    • 42 篇 药学(可授医学、理...
    • 17 篇 公共卫生与预防医...
  • 22 篇 法学
    • 20 篇 社会学
  • 18 篇 教育学
  • 12 篇 农学
  • 10 篇 经济学
  • 7 篇 文学
  • 3 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 30 篇 electroencephalo...
  • 28 篇 feature extracti...
  • 22 篇 deep learning
  • 22 篇 training
  • 21 篇 multiobjective o...
  • 17 篇 neural networks
  • 16 篇 machine learning
  • 15 篇 reinforcement le...
  • 12 篇 brain modeling
  • 12 篇 brain-computer i...
  • 11 篇 task analysis
  • 11 篇 optimization
  • 11 篇 evolutionary com...
  • 10 篇 deep neural netw...
  • 10 篇 generative adver...
  • 10 篇 convolution
  • 10 篇 clustering algor...
  • 9 篇 three-dimensiona...
  • 9 篇 image segmentati...
  • 9 篇 semantics

机构

  • 98 篇 guangdong provin...
  • 34 篇 institute of sci...
  • 33 篇 department of co...
  • 33 篇 nanhu brain-comp...
  • 24 篇 beijing advanced...
  • 23 篇 southern univers...
  • 23 篇 college of compu...
  • 23 篇 research institu...
  • 21 篇 department of co...
  • 16 篇 shanghai key lab...
  • 15 篇 ji hua laborator...
  • 15 篇 guangdong provin...
  • 15 篇 henan key labora...
  • 14 篇 key laboratory o...
  • 14 篇 research center ...
  • 13 篇 shanghai center ...
  • 13 篇 university of ch...
  • 13 篇 the state key la...
  • 12 篇 school of automa...
  • 11 篇 the guangdong pr...

作者

  • 49 篇 ishibuchi hisao
  • 35 篇 yao xin
  • 32 篇 tang ke
  • 22 篇 pang lie meng
  • 20 篇 shang ke
  • 20 篇 nan yang
  • 20 篇 liu shengcai
  • 18 篇 hisao ishibuchi
  • 18 篇 liu jialin
  • 14 篇 jianfeng feng
  • 14 篇 shu tianye
  • 14 篇 yang peng
  • 13 篇 feng jianfeng
  • 13 篇 xin yao
  • 12 篇 cheng ran
  • 12 篇 zhang junping
  • 12 篇 yang nan
  • 11 篇 zhang yangsong
  • 11 篇 shan hongming
  • 11 篇 kang xiaoyang

语言

  • 868 篇 英文
  • 47 篇 其他
  • 20 篇 中文
  • 1 篇 法文
检索条件"机构=The Henan Key Laboratory of Brain Science and Brain Computer Interface Technology"
932 条 记 录,以下是851-860 订阅
排序:
Hierarchical taxonomy-aware and attentional graph capsule RCNNs for large-scale multi-label text classification
arXiv
收藏 引用
arXiv 2019年
作者: Peng, Hao Li, Jianxin Gong, Qiran Wang, Senzhang He, Lifang Li, Bo Wang, Lihong Yu, Philip S. Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100083 State Key Laboratory of Software Development Environment Beihang University Beijing100083 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China Department of Biostatistics and Epidemiology University of Pennsylvania PhiladelphiaPA19104 United States National Computer Network Emergency Response Technical Team Coordination Center of China Beijing100029 China Department of Computer Science University of Illinois at Chicago ChicagoIL60607 United States
CNNs, RNNs, GCNs, and CapsNets have shown significant insights in representation learning and are widely used in various text mining tasks such as large-scale multi-label text classification. However, most existing de... 详细信息
来源: 评论
Correction to: AEAU-Net: An unsupervised end-to-end registration network by combining affine transformation and deformable medical image registration
收藏 引用
Medical & biological engineering & computing 2023年 第11期61卷 2875页
作者: Wei Qiu Lianjin Xiong Ning Li Zhangrong Luo Yaobin Wang Yangsong Zhang School of Computer Science and Technology Laboratory for Brain Science and Medical Artificial Intelligence Southwest University of Science and Technology Mianyang 621010 China. School of Computer Science and Technology Laboratory for Brain Science and Medical Artificial Intelligence Southwest University of Science and Technology Mianyang 621010 China. zhangysacademy@***. NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital) Mianyang 621010 China. zhangysacademy@***. Key Laboratory of Testing Technology for Manufacturing Process Ministry of Education Southwest University of Science and Technology Mianyang 621010 Sichuan China. zhangysacademy@***.
来源: 评论
Deep learning for polygenic score analysis for Alzheimer's disease risk prediction in the Chinese population
收藏 引用
Alzheimer's & dementia : the journal of the Alzheimer's Association 2021年 第Sup3期17卷 e056625-e056625页
作者: Xiaopu Zhou Yu Chen Fanny C. F. Ip Yuanbing JIANG Han Cao Huan Zhong Yuewen Chen Jiahang Chen Yulin Zhang Shuangshuang Ma Nicole Chit Hang Lai Ronnie M.N. Lo Kit Cheung Estella Pui-Sze Tong Kin Y Mok John Hardy Qihao Guo Vincent C.T. Mok Timothy CY Kwok Lei Chen Amy K.Y. Fu Nancy Y. Ip Division of Life Science State Key Laboratory of Molecular Neuroscience Molecular Neuroscience Center The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong Guangdong Provincial Key Laboratory of Brain Science Disease and Drug Development HKUST Shenzhen Research Institute Shenzhen-Hong Kong Institute of Brain Science Shenzhen China Hong Kong Center for Neurodegenerative Diseases Hong Kong Science and Technology Parks Hong Kong Brain Cognition and Brain Disease Institute Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Department of Computer Science and Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong Department of Neurodegenerative Disease UCL Institute of Neurology London United Kingdom Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai China Gerald Choa Neuroscience Centre Lui Che Woo Institute of Innovative Medicine Therese Pei Fong Chow Research Centre for Prevention of Dementia Division of Neurology Department of Medicine and Therapeutics Chinese University of Hong Kong Hong Kong Therese Pei Fong Chow Research Centre for Prevention of Dementia Division of Geriatrics Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong Division of Life Science State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
BACKGROUND: Alzheimer's disease (AD) is a leading cause of mortality in the elderly. Genetics studies have identified variants associated with AD. Moreover, Polygenic score analysis can infer the risk of developin...
来源: 评论
Predicting extreme events from data using deep machine learning: When and where
收藏 引用
Physical Review Research 2022年 第2期4卷 023028-023028页
作者: Junjie Jiang Zi-Gang Huang Celso Grebogi Ying-Cheng Lai The Key Laboratory of Biomedical Information Engineering of Ministry of Education Institute of Health and Rehabilitation Science School of Life Science and Technology Research Center for Brain-inspired Intelligence Xi'an Jiaotong University The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs Xi'an Shaanxi 710049 China School of Electrical Computer and Energy Engineering Arizona State University Tempe Arizona 85287 USA Institute for Complex Systems and Mathematical Biology School of Natural and Computing Sciences King's College University of Aberdeen Aberdeen AB24 3UE United Kingdom Department of Physics Arizona State University Tempe Arizona 85287 USA
We develop a framework based on the deep convolutional neural network (DCNN) for model-free prediction of the occurrence of extreme events both in time (“when”) and in space (“where”) in nonlinear physical systems... 详细信息
来源: 评论
technology Roadmap for Flexible Sensors
收藏 引用
ACS NANO 2023年 第6期17卷 5211-5295页
作者: Luo, Yifei Abidian, Mohammad Reza Ahn, Jong-Hyun Akinwande, Deji Andrews, Anne M. Antonietti, Markus Bao, Zhenan Berggren, Magnus Berkey, Christopher A. Bettinger, Christopher John Chen, Jun Chen, Peng Cheng, Wenlong Cheng, Xu Choi, Seon-Jin Chortos, Alex Dagdeviren, Canan Dauskardt, Reinhold H. Di, Chong-an Dickey, Michael D. Duan, Xiangfeng Facchetti, Antonio Fan, Zhiyong Fang, Yin Feng, Jianyou Feng, Xue Gao, Huajian Gao, Wei Gong, Xiwen Guo, Chuan Fei Guo, Xiaojun Hartel, Martin C. He, Zihan Ho, John S. Hu, Youfan Huang, Qiyao Huang, Yu Huo, Fengwei Hussain, Muhammad M. Javey, Ali Jeong, Unyong Jiang, Chen Jiang, Xingyu Kang, Jiheong Karnaushenko, Daniil Khademhosseini, Ali Kim, Dae-Hyeong Kim, Il-Doo Kireev, Dmitry Kong, Lingxuan Lee, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Li, Fengyu Li, Jinxing Liang, Cuiyuan Lim, Chwee Teck Lin, Yuanjing Lipomi, Darren J. Liu, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Loh, Xian Jun Lu, Nanshu Lv, Zhisheng Magdassi, Shlomo Malliaras, George G. Matsuhisa, Naoji Nathan, Arokia Niu, Simiao Pan, Jieming Pang, Changhyun Pei, Qibing Peng, Huisheng Qi, Dianpeng Ren, Huaying Rogers, John A. Rowe, Aaron Schmidt, Oliver G. Sekitani, Tsuyoshi Seo, Dae-Gyo Shen, Guozhen Sheng, Xing Shi, Qiongfeng Someya, Takao Song, Yanlin Stavrinidou, Eleni Su, Meng Sun, Xuemei Takei, Kuniharu Tao, Xiao-Ming Tee, Benjamin C. K. Thean, Aaron Voon-Yew Trung, Tran Quang Wan, Changjin Wang, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Weiss, Paul S. Wen, Hanqi Xu, Sheng Xu, Tailin Yan, Hongping Yan, Xuzhou Yang, Hui Yang, Le Yang, Shuaijian Yin, Lan Yu, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Zamburg, Evgeny Zhang, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhao, Siyuan Zhao, Xuanhe Zheng, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zhou, Tao Zhu, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zou, Guijin Chen, Xiaodong 08-03 Innovis Singapore 138634 Republic of Singapore Innovative Centre for Flexible Devices (iFLEX) School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore Department of Biomedical Engineering University of Houston Houston Texas 77024 United States School of Electrical and Electronic Engineering Yonsei University Seoul 03722 Republic of Korea Department of Electrical and Computer Engineering The University of Texas at Austin Austin Texas 78712 United States Microelectronics Research Center The University of Texas at Austin Austin Texas 78758 United States Department of Chemistry and Biochemistry California NanoSystems Institute and Department of Psychiatry and Biobehavioral Sciences Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology University of California Los Angeles Los Angeles California 90095 United States Colloid Chemistry Department Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany Department of Chemical Engineering Stanford University Stanford California 94305 United States Laboratory of Organic Electronics Department of Science and Technology Campus Norrköping Linköping University 83 Linköping Sweden Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC) SE-100 44 Stockholm Sweden Department of Materials Science and Engineering Stanford University Stanford California 94301 United States Department of Biomedical Engineering and Department of Materials Science and Engineering Carnegie Mellon University Pittsburgh Pennsylvania 15213 United States Department of Bioengineering University of California Los Angeles Los Angeles California 90095 United States School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University Singapore 637457 Singapore Nanobionics Group Department of Chemical and Biological Engineering Monash University Clayton Australia 3800 Monash
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitati... 详细信息
来源: 评论
Generating large-scale dynamic optimization problem instances using the generalized moving peaks benchmark
arXiv
收藏 引用
arXiv 2021年
作者: Omidvar, Mohammad Nabi Yazdani, Danial Branke, Jürgen Li, Xiaodong Yang, Shengxiang Yao, Xin School of Computing University of Leeds Leeds University Business School Leeds United Kingdom Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China Operational Research and Management Sciences Group Warwick Business School University of Warwick CoventryCV4 7AL United Kingdom RMIT University GPO Box 2476 Melbourne3001 Australia School of Computer Science and Informatics De Montfort University Leicester United Kingdom School of Computer Science University of Birmingham BirminghamB15 2TT United Kingdom
This document describes the generalized moving peaks benchmark (GMPB) [1] and how it can be used to generate problem instances for continuous large-scale dynamic optimization problems. It presents a set 15 benchmark p... 详细信息
来源: 评论
Neuroimaging epicenters as potential sites of onset of the neuroanatomical pathology in schizophrenia
收藏 引用
science Advances 2024年 第24期10卷 eadk6063页
作者: Jiang, Yuchao Palaniyappan, Lena Luo, Cheng Chang, Xiao Zhang, Jie Tang, Yingying Zhang, Tianhong Li, Chunbo Zhou, Enpeng Yu, Xin Li, Wei An, Dongmei Zhou, Dong Huang, Chu-Chung Tsai, Shih-Jen Lin, Ching-Po Cheng, Jingliang Wang, Jijun Yao, Dezhong Cheng, Wei Feng, Jianfeng Institute of Science and Technology for Brain-Inspired Intelligence Fudan University Shanghai China Ministry of Education Shanghai China Douglas Mental Health University Institute Department of Psychiatry McGill University MontréalQC Canada Robarts Research Institute University of Western Ontario LondonON Canada Lawson Health Research Institute LondonON Canada Clinical Hospital of Chengdu Brain Science Institute MOE Key Lab for Neuroinformation School of life Science and Technology University of Electronic Science and Technology of China Chengdu China High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province Center for Information in Medicine University of Electronic Science and Technology of China Chengdu China Chinese Academy of Medical Sciences Chengdu China Shanghai Key Laboratory of Psychotic Disorders Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine Shanghai200030 China Beijing China Department of Neurology West China Hospital Sichuan University Chengdu610041 China School of Psychology and Cognitive Science East China Normal University Shanghai China Shanghai Changning Mental Health Center Shanghai China Department of Psychiatry Taipei Veterans General Hospital Taipei Taiwan Institute of Neuroscience National Yang Ming Chiao Tung University Taipei Taiwan Department of MRI First Affiliated Hospital of Zhengzhou University Zhengzhou China Department of Neurology Huashan Hospital Fudan University Shanghai China Fudan ISTBI—ZJNU Algorithm Centre for Brain-Inspired Intelligence Zhejiang Normal University Jinhua China MOE Frontiers Center for Brain Science Fudan University Shanghai China Zhangjiang Fudan International Innovation Center Shanghai China School of Data Science Fudan University Shanghai China Department of Computer Science University of Warwick CoventryCV 4 7AL United Kingdom
Schizophrenia lacks a clear definition at the neuroanatomical level, capturing the sites of origin and progress of this disorder. Using a network-theory approach called epicenter mapping on cross-sectional magnetic re... 详细信息
来源: 评论
Detecting out-of-distribution samples via variational auto-encoder with reliable uncertainty estimation
arXiv
收藏 引用
arXiv 2020年
作者: Ran, Xuming Xu, Mingkun Mei, Lingrui Xu, Qi Liu, Quanying Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen518055 China Center for Brain Inspired Computing Research Department of Precision Instrument Tsinghua University Beijing100084 China China Automotive Engineering Research Institute Chongqing401122 China School of Artifical Intelligence Electronic and Electrical Engineering School of Artifical Intelligence Dalian University of Technology Dalian116024 China College of Mathematics and Statistics Chongqing Jiaotong University Chongqing400074 China College of Computer Science and Technology Zhejiang University Hangzhou310027 China
Variational autoencoders (VAEs) are influential generative models with rich representation capabilities from the deep neural network architecture and Bayesian method. However, VAE models have a weakness that assign a ... 详细信息
来源: 评论
Networked Integrated Sensing and Communications for 6G Wireless Systems
arXiv
收藏 引用
arXiv 2024年
作者: Li, Jiapeng Shao, Xiaodan Chen, Feng Wan, Shaohua Liu, Chang Wei, Zhiqiang Ng, Derrick Wing Kwan The College of Artificial Intelligence Southwest University Chongqing400715 China The Brain-Inspired Computing and Intelligent Control Key Laboratory Southwest University Chongqing400715 China The Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University Chongqing400715 China The Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China Shenzhen518110 China The School of Mathematics and Statistics Xi'an Jiaotong University Xi'An710049 China The Peng Cheng Laboratory Guangdong Shenzhen518055 China Guangdong Guangzhou510555 China The Department of Computer Science and Information Technology La Trobe University MelbourneVIC3150 Australia The School of Electrical Engineering and Telecommunications University of New South Wales SydneyNSW2052 Australia
Integrated sensing and communication (ISAC) is envisioned as a key pillar for enabling the upcoming sixth generation (6G) communication systems, requiring not only reliable communication functionalities but also highl... 详细信息
来源: 评论
ECG-DPM: Electrocardiogram Generation via a Spectrogram-based Diffusion Probabilistic Model
ECG-DPM: Electrocardiogram Generation via a Spectrogram-base...
收藏 引用
Smart World Congress (SWC), IEEE
作者: Lujundong Li Tong Xia Haojie Zhang Dongchen He Kun Qian Bin Hu Yoshiharu Yamamoto Björn W. Schuller Cecilia Mascolo Key Laboratory of Brain Health Intelligent Evaluation and Intervention Ministry of Education Beijing Institute of Technology Beijing China School of Medical Technology Beijing Institute of Technology Beijing China Info Hub AI Thrust the Hong Kong University of Science and Technology Guangzhou China Department of Computer Science and Technology University of Cambridge UK School of Life Sciences Peking University Beijing China Guaduate School of Frontier Sciences Computational Biology and Medical Sciences The University of Tokyo Japan Educational Physiology Laboratory Graduate School of Education The University of Tokyo Japan GLAM – the Group on Language Audio & Music Imperial College London UK CHI – Chair of Health Informatics MRI Technical University of Munich Germany
An electrocardiogram (ECG) records the electrical signals from the heart to assess various cardiovascular conditions. Deep learning methods have been proposed to model ECGs, but the insufficient availability of ECG da... 详细信息
来源: 评论