咨询与建议

限定检索结果

文献类型

  • 79 篇 会议
  • 50 篇 期刊文献

馆藏范围

  • 129 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 70 篇 计算机科学与技术...
    • 67 篇 软件工程
    • 20 篇 信息与通信工程
    • 15 篇 控制科学与工程
    • 11 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 5 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 光学工程
    • 4 篇 交通运输工程
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 农业工程
  • 51 篇 理学
    • 38 篇 数学
    • 16 篇 统计学(可授理学、...
    • 15 篇 生物学
    • 4 篇 物理学
    • 4 篇 系统科学
    • 2 篇 地质学
  • 29 篇 管理学
    • 19 篇 图书情报与档案管...
    • 11 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 7 篇 教育学
    • 4 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 8 篇 machine learning
  • 8 篇 forecasting
  • 7 篇 recommender syst...
  • 6 篇 predictive model...
  • 6 篇 time series
  • 6 篇 data models
  • 4 篇 deep neural netw...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 time series anal...
  • 4 篇 students
  • 4 篇 machine learning...
  • 4 篇 flying ad hoc ne...
  • 3 篇 object detection
  • 3 篇 computational mo...
  • 3 篇 feature extracti...
  • 3 篇 uncertainty
  • 3 篇 prediction algor...
  • 3 篇 artificial intel...
  • 3 篇 training

机构

  • 23 篇 information syst...
  • 16 篇 information syst...
  • 5 篇 information syst...
  • 4 篇 pattern recognit...
  • 4 篇 information syst...
  • 4 篇 future technolog...
  • 3 篇 school of comput...
  • 3 篇 information syst...
  • 3 篇 department of in...
  • 3 篇 institute of res...
  • 3 篇 australian insti...
  • 3 篇 university of hi...
  • 3 篇 school of medici...
  • 2 篇 department of co...
  • 2 篇 university of hi...
  • 2 篇 machine learning...
  • 2 篇 information syst...
  • 2 篇 department of co...
  • 2 篇 arba minch unive...
  • 2 篇 engineering scho...

作者

  • 62 篇 schmidt-thieme l...
  • 22 篇 lars schmidt-thi...
  • 14 篇 grabocka josif
  • 9 篇 drumond lucas
  • 9 篇 nanopoulos alexa...
  • 7 篇 wistuba martin
  • 6 篇 krohn-grimberghe...
  • 6 篇 martin wistuba
  • 5 篇 elsayed shereen
  • 5 篇 rashed ahmed
  • 4 篇 yousefpoor moham...
  • 4 篇 buza krisztian
  • 4 篇 jawed shayan
  • 4 篇 schilling nicola...
  • 4 篇 gantner zeno
  • 4 篇 lee sang-woong
  • 4 篇 thai-nghe nguyen
  • 4 篇 rahmani amir mas...
  • 4 篇 madhusudhanan ki...
  • 4 篇 hosseinzadeh meh...

语言

  • 126 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=The Information Systems and Machine Learning Lab"
129 条 记 录,以下是11-20 订阅
排序:
DCSF: Deep Convolutional Set Functions for Classification of Asynchronous Time Series
DCSF: Deep Convolutional Set Functions for Classification of...
收藏 引用
International Conference on Data Science and Advanced Analytics (DSAA)
作者: Vijaya Krishna Yalavarthi Johannes Burchert Lars Schmidt-Thieme Information Systems and Machine Learning Lab University of Hildesheim Germany
Asynchronous Time Series is a multivariate time series where all the channels are observed asynchronously-independently, making the time series extremely sparse when aligning them. We often observe this effect in appl... 详细信息
来源: 评论
End-to-End Image-Based Fashion Recommendation
arXiv
收藏 引用
arXiv 2022年
作者: Elsayed, Shereen Brinkmeyer, Lukas Schmidt-Thieme, Lars Information Systems and Machine Learning Lab University of Hildesheim Germany
In fashion-based recommendation settings, incorporating the item image features is considered a crucial factor, and it has shown significant improvements to many traditional models, including but not limited to matrix... 详细信息
来源: 评论
On the Potential of Using ERP Business and System Data for Fraud Detection
On the Potential of Using ERP Business and System Data for F...
收藏 引用
2022 IEEE International Conference on Big Data, Big Data 2022
作者: Schnepf, Jonas Vetter, Paula Temel, Tarik Scheuermann, Bernd Schmidt-Thieme, Lars University of Applied Sciences Karlsruhe Faculty of Management Science and Engineering Karlsruhe Germany Institute of Computer Science University of Hildesheim Information Systems and Machine Learning Lab Hildesheim Germany
Enterprise Resource Planning (ERP) systems are used to support and to control the business processes of a company or organization. Such systems integrate the data across the entire company into a complete system that ... 详细信息
来源: 评论
Is Data All That Matters? the Role of Control Frequency for learning-Based Sampled-Data Control of Uncertain systems
Is Data All That Matters? the Role of Control Frequency for ...
收藏 引用
American Control Conference (ACC)
作者: Ralf Römer Lukas Brunke Siqi Zhou Angela P. Schoellig Learning Systems and Robotics Lab (***) School of Computation Information and Technology and the Munich Institute for Robotics and Machine Intelligence (MIRMI) Technical University of Munich Germany
learning models or control policies from data has become a powerful tool to improve the performance of uncertain systems. While a strong focus has been placed on increasing the amount and quality of data to improve pe... 详细信息
来源: 评论
GQFormer: A Multi-Quantile Generative Transformer for Time Series Forecasting
GQFormer: A Multi-Quantile Generative Transformer for Time S...
收藏 引用
IEEE International Conference on Big Data
作者: Shayan Jawed Lars Schmidt-Thieme Information Systems and Machine Learning Lab University of Hildesheim Hildesheim Germany
We propose GQFormer, a probabilistic time series forecasting method that models the quantile function of the forecast distribution. Our methodology is rooted in the Implicit Quantile modeling approach, where samples f... 详细信息
来源: 评论
Anomaly Heterogeneity learning for Open-Set Supervised Anomaly Detection
Anomaly Heterogeneity Learning for Open-Set Supervised Anoma...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Jiawen Zhu Choubo Ding Yu Tian Guansong Pang School of Computing and Information Systems Singapore Management University Australian Institute for Machine Learning University of Adelaide Harvard Ophthalmology AI Lab Harvard University
Open-set supervised anomaly detection (OSAD) - a recently emerging anomaly detection area - aims at utilizing a few samples of anomaly classes seen during training to de-tect unseen anomalies (i.e., samples from open-... 详细信息
来源: 评论
DeepStay: Stay Region Extraction from Location Trajectories Using Weak Supervision
DeepStay: Stay Region Extraction from Location Trajectories ...
收藏 引用
International Conference on Intelligent Transportation
作者: Christian Löwens Daniela Thyssens Emma Andersson Christina Jenkins Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim Hildesheim Germany Devoteam Creative Tech Malmö Sweden
Nowadays, mobile devices enable constant tracking of the user's position and location trajectories can be used to infer personal points of interest (POIs) like homes, workplaces, or stores. A common way to extract...
来源: 评论
Leveraging Group Annotations in Object Detection Using Graph-Based Pseudo-labeling  43rd
Leveraging Group Annotations in Object Detection Using Grap...
收藏 引用
43rd DAGM German Conference on Pattern Recognition, DAGM GCPR 2021
作者: Pototzky, Daniel Kirschner, Matthias Schmidt-Thieme, Lars Robert Bosch GmbH Gerlingen Germany Information Systems and Machine Learning Lab University of Hildesheim Hildesheim Germany
We address the problem of dealing with group annotations in object detection where a multitude of items is included in a single bounding box. The standard training protocols in use for most datasets either ignore anch... 详细信息
来源: 评论
Self-supervised learning for Object Detection in Autonomous Driving  43rd
Self-supervised Learning for Object Detection in Autonomou...
收藏 引用
43rd DAGM German Conference on Pattern Recognition, DAGM GCPR 2021
作者: Pototzky, Daniel Sultan, Azhar Kirschner, Matthias Schmidt-Thieme, Lars Robert Bosch GmbH Gerlingen Germany Information Systems and Machine Learning Lab University of Hildesheim Hildesheim Germany
Recently, self-supervised pretraining methods have achieved impressive results, matching ImageNet weights on a variety of downstream tasks including object detection. Despite their success, these methods have some lim... 详细信息
来源: 评论
Deep learning-Based Prediction of Daily COVID-19 Cases Using X (Twitter) Data
Deep Learning-Based Prediction of Daily COVID-19 Cases Using...
收藏 引用
34th Medical Informatics Europe Conference, MIE 2024
作者: Ahmed, Nourhan Saeed, Khansa Rodrigues, Jeevitha Lora Naeem, Maha Correa, Andrea Sanabboon, Chairungroj Rostam Niakan Kalhori, Sharareh Deserno, Thomas M. Information Systems and Machine Learning Lab Department of Mathematics Natural Science Economics and Computer Science Institute of Computer Science University of Hildesheim Germany Peter L. Reichertz Institute for Medical Informatics TU Braunschweig Hannover Medical School Braunschweig Germany Department of Health Information Management School of Allied Medical Sciences Tehran University of Medical Sciences Tehran Iran
Due to the importance of COVID-19 control, innovative methods for predicting cases using social network data are increasingly under attention. This study aims to predict confirmed COVID-19 cases using X (Twitter) soci... 详细信息
来源: 评论