咨询与建议

限定检索结果

文献类型

  • 421 篇 会议
  • 152 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 579 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 343 篇 工学
    • 227 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 78 篇 信息与通信工程
    • 59 篇 生物工程
    • 53 篇 机械工程
    • 49 篇 控制科学与工程
    • 40 篇 光学工程
    • 36 篇 生物医学工程(可授...
    • 24 篇 化学工程与技术
    • 20 篇 仪器科学与技术
    • 20 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 建筑学
    • 8 篇 土木工程
    • 6 篇 交通运输工程
    • 6 篇 安全科学与工程
  • 193 篇 理学
    • 84 篇 数学
    • 66 篇 物理学
    • 63 篇 生物学
    • 25 篇 化学
    • 24 篇 统计学(可授理学、...
    • 6 篇 系统科学
  • 90 篇 管理学
    • 61 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 16 篇 艺术学
    • 16 篇 设计学(可授艺术学...
  • 13 篇 医学
    • 13 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 4 篇 经济学
  • 2 篇 文学
  • 1 篇 教育学

主题

  • 86 篇 pattern recognit...
  • 84 篇 feature extracti...
  • 67 篇 image segmentati...
  • 65 篇 computer vision
  • 64 篇 handwriting reco...
  • 59 篇 character recogn...
  • 56 篇 support vector m...
  • 43 篇 training
  • 39 篇 optical characte...
  • 36 篇 shape
  • 30 篇 accuracy
  • 26 篇 writing
  • 26 篇 histograms
  • 25 篇 testing
  • 23 篇 databases
  • 19 篇 image edge detec...
  • 19 篇 text recognition
  • 17 篇 image color anal...
  • 17 篇 image recognitio...
  • 16 篇 automation

机构

  • 206 篇 computer vision ...
  • 43 篇 computer vision ...
  • 31 篇 national key lab...
  • 28 篇 faculty of compu...
  • 27 篇 shenzhen key lab...
  • 26 篇 university of ch...
  • 21 篇 siat branch shen...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 17 篇 computer vision ...
  • 15 篇 shenzhen key lab...
  • 12 篇 computer vision ...
  • 12 篇 shanghai artific...
  • 12 篇 indian statistic...
  • 10 篇 school of comput...
  • 10 篇 shanghai ai labo...
  • 9 篇 sensetime resear...
  • 8 篇 graduate school ...
  • 8 篇 national laborat...
  • 8 篇 idetic universit...

作者

  • 108 篇 umapada pal
  • 102 篇 pal umapada
  • 38 篇 b.b. chaudhuri
  • 35 篇 qiao yu
  • 30 篇 michael blumenst...
  • 30 篇 palaiahnakote sh...
  • 28 篇 blumenstein mich...
  • 26 篇 shivakumara pala...
  • 24 篇 chaudhuri b.b.
  • 22 篇 u. pal
  • 17 篇 tong lu
  • 17 篇 lu tong
  • 16 篇 chanda sukalpa
  • 16 篇 wang yali
  • 15 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 bidyut b. chaudh...
  • 13 篇 p. nagabhushan
  • 12 篇 ujjwal bhattacha...
  • 12 篇 garain utpal

语言

  • 546 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"机构=The Institute of Computer Vision and Pattern Recognition"
579 条 记 录,以下是101-110 订阅
排序:
Low-Resolution Action recognition for Tiny Actions Challenge
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Boyu Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often reco... 详细信息
来源: 评论
Special Issue on Face Presentation Attack Detection
IEEE Transactions on Biometrics, Behavior, and Identity Scie...
收藏 引用
IEEE Transactions on Biometrics, Behavior, and Identity Science 2021年 第3期3卷 282-284页
作者: Wan, Jun Escalera, Sergio Escalante, Hugo Jair Guo, Guodong Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Computer Vision Center Universitat de Barcelona Barcelona08007 Spain Instituto Nacional de Astrofísica Óptica y Electrónica Puebla72840 Mexico Institute of Deep Learning Baidu Research Beijing100193 China Center for Ai Research and Innovation Westlake University Hangzhou310024 China
Face presentation attack detection, also termed Face Anti-Spoofing (FAS) [item 1), 2) in the Appendix), is a hot and challenging research topic that has received much attention from the computer vision and pattern rec... 详细信息
来源: 评论
AGA-GAN: Attribute guided attention generative adversarial network with U-net for face hallucination
arXiv
收藏 引用
arXiv 2021年
作者: Srivastava, Abhishek Chanda, Sukalpa Pal, Umapada Computer Vision and Pattern Recognition Unit Indian Statistical Institute West Bengal Kolkata700108 India Department of Computer Science and Communication Østfold University College Halden Norway
The performance of facial super-resolution methods relies on their ability to recover facial structures and salient features effectively. Even though the convolutional neural network and generative adversarial network... 详细信息
来源: 评论
An Hybrid Attention-Based System for the Prediction of Facial Attributes  4th
An Hybrid Attention-Based System for the Prediction of Fac...
收藏 引用
4th International Workshop on Brain-Inspired Computing, BrainComp 2019
作者: Khellat-Kihel, Souad Sun, Zhenan Tistarelli, Massimo Computer Vision Laboratory University of Sassari Viale Italia 39 Sassari07100 Italy Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Room 1605 Intelligence Bulding 95 Zhongguancun East Road Beijing100190 China Computer Vision Laboratory Department of Biomedical Sciences and Information Technology University of Sassari Viale S. Pietro 43/b Sassari07100 Italy
Recent research on face analysis has demonstrated the richness of information embedded in feature vectors extracted from a deep convolutional neural network. Even though deep learning achieved a very high performance ... 详细信息
来源: 评论
A New Defect Detection Method for Improving Text Detection and recognition Performances in Natural Scene Images
A New Defect Detection Method for Improving Text Detection a...
收藏 引用
2020 Swedish Workshop on Data Science, SweDS 2020
作者: Mokayed, Hamam Shivakumara, Palaiahnakote Liwicki, Marcus Pal, Umapada University of Malaya Faculty of Computer Science and Information Technology Kuala Lumpur Malaysia Lulea University of Technology Department of Computer Science Electrical and Space Engineering Sweden Indian Statistical Institute Computer Vision and Pattern Recognition Unit Kolkata India
This paper presents a new idea for improving text detection and recognition performances by detecting defects in the text detection results. Despite the rapid development of powerful deep learning based models for sce... 详细信息
来源: 评论
A method to generate synthetically warped document image  4th
A method to generate synthetically warped document image
收藏 引用
4th International Conference on computer vision and Image Processing, CVIP 2019
作者: Garai, Arpan Biswas, Samit Mandal, Sekhar Chaudhuri, Bidyut B. Department of Computer Science and Technology Indian Institute of Engineering Sciences and Technology Shibpur HowrahWest Bengal711103 India Techno India University Kolkata India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
The digital camera captured document images may often be warped and distorted due to different camera angles or document surfaces. A robust technique is needed to solve this kind of distortion. The research on dewarpi... 详细信息
来源: 评论
CoCoNet: A Collaborative Convolutional Network applied to fine-grained bird species classification
CoCoNet: A Collaborative Convolutional Network applied to fi...
收藏 引用
International Conference on Image and vision Computing New Zealand, IVCNZ
作者: Tapabrata Chakraborti Brendan McCane Steven Mills Umapada Pal University of Otago Computer Vision and Pattern recognition Unit Indian Statistical Institute
The following topics are dealt with: convolutional neural nets; learning (artificial intelligence); image classification; computer vision; feature extraction; video signal processing; deep learning (artificial intelli... 详细信息
来源: 评论
Recognizing Bengali Word Images - A Zero-Shot Learning Perspective
Recognizing Bengali Word Images - A Zero-Shot Learning Persp...
收藏 引用
International Conference on pattern recognition
作者: Sukalpa Chanda Daniël Haitink Prashant Kumar Prasad Jochem Baas Umapada Pal Lambert Schomaker Østfold University College Norway Faculty of Science and Engineering. Bernoulli Institute for Mathematics Computer Science and Artificial Intelligence University of Groningen The Netherlands Computer Vision and Pattern Recognition Unit Indian Statistical Institute India
Zero-Shot Learning(ZSL) techniques could classify a completely unseen class, which it has never seen before during training. Thus, making it more apt for any real-life classification problem, where it is not possible ... 详细信息
来源: 评论
Activating More Pixels in Image Super-Resolution Transformer
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Xiangyu Wang, Xintao Zhou, Jiantao Qiao, Yu Dong, Chao State Key Laboratory of Internet of Things for Smart City University of Macau China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China ARC Lab Tencent PCG China
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution. However, we find that these networks can only utilize a limited spatial range of input information... 详细信息
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and pattern recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论