咨询与建议

限定检索结果

文献类型

  • 421 篇 会议
  • 152 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 579 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 343 篇 工学
    • 227 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 78 篇 信息与通信工程
    • 59 篇 生物工程
    • 53 篇 机械工程
    • 49 篇 控制科学与工程
    • 40 篇 光学工程
    • 36 篇 生物医学工程(可授...
    • 24 篇 化学工程与技术
    • 20 篇 仪器科学与技术
    • 20 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 建筑学
    • 8 篇 土木工程
    • 6 篇 交通运输工程
    • 6 篇 安全科学与工程
  • 193 篇 理学
    • 84 篇 数学
    • 66 篇 物理学
    • 63 篇 生物学
    • 25 篇 化学
    • 24 篇 统计学(可授理学、...
    • 6 篇 系统科学
  • 90 篇 管理学
    • 61 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 16 篇 艺术学
    • 16 篇 设计学(可授艺术学...
  • 13 篇 医学
    • 13 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 4 篇 经济学
  • 2 篇 文学
  • 1 篇 教育学

主题

  • 86 篇 pattern recognit...
  • 84 篇 feature extracti...
  • 67 篇 image segmentati...
  • 65 篇 computer vision
  • 64 篇 handwriting reco...
  • 59 篇 character recogn...
  • 56 篇 support vector m...
  • 43 篇 training
  • 39 篇 optical characte...
  • 36 篇 shape
  • 30 篇 accuracy
  • 26 篇 writing
  • 26 篇 histograms
  • 25 篇 testing
  • 23 篇 databases
  • 19 篇 image edge detec...
  • 19 篇 text recognition
  • 17 篇 image color anal...
  • 17 篇 image recognitio...
  • 16 篇 automation

机构

  • 206 篇 computer vision ...
  • 43 篇 computer vision ...
  • 31 篇 national key lab...
  • 28 篇 faculty of compu...
  • 27 篇 shenzhen key lab...
  • 26 篇 university of ch...
  • 21 篇 siat branch shen...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 17 篇 computer vision ...
  • 15 篇 shenzhen key lab...
  • 12 篇 computer vision ...
  • 12 篇 shanghai artific...
  • 12 篇 indian statistic...
  • 10 篇 school of comput...
  • 10 篇 shanghai ai labo...
  • 9 篇 sensetime resear...
  • 8 篇 graduate school ...
  • 8 篇 national laborat...
  • 8 篇 idetic universit...

作者

  • 108 篇 umapada pal
  • 103 篇 pal umapada
  • 38 篇 b.b. chaudhuri
  • 36 篇 qiao yu
  • 30 篇 michael blumenst...
  • 30 篇 palaiahnakote sh...
  • 28 篇 blumenstein mich...
  • 27 篇 shivakumara pala...
  • 24 篇 chaudhuri b.b.
  • 22 篇 u. pal
  • 18 篇 lu tong
  • 17 篇 tong lu
  • 16 篇 chanda sukalpa
  • 16 篇 wang yali
  • 15 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 bidyut b. chaudh...
  • 13 篇 p. nagabhushan
  • 12 篇 ujjwal bhattacha...
  • 12 篇 garain utpal

语言

  • 546 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"机构=The Institute of Computer Vision and Pattern Recognition"
579 条 记 录,以下是111-120 订阅
排序:
Automated industrial quality control of pipe stacks using computer vision  4th
Automated industrial quality control of pipe stacks using co...
收藏 引用
4th International Conference on computer vision and Image Processing, CVIP 2019
作者: Chatterjee, Sayantan Chaudhuri, Bidyut B. Nandi, Gora C. Department of Robotics and Artificial Intelligence Indian Institute of Information Technology Allahabad AllahabadUttar Pradesh211012 India Department of Computer Vision and Pattern Recognition Indian Statistical Institute Kolkata KolkataWest Bengal700108 India
In this work, we describe an automated quality assurance system for pipes in warehouses and yards using simple handheld and mobile equipment like smartphone cameras. Currently, quality inspection for bent and crooked ... 详细信息
来源: 评论
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论
Multi-scale Promoted Self-adjusting Correlation Learning for Facial Action Unit Detection
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Xin Yuan, Kaishen Niu, Xuesong Shi, Jingang Yu, Zitong Yue, Huanjing Yang, Jingyu The School of Electrical and Information Engineering Tianjin University Tianjin300072 China Computer Vision and Pattern Recognition Laboratory School of Engineering Science Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland Beijing Institute for General Artificial Intelligence Beijing100080 China School of Software Engineering Xi’an Jiaotong University Xi’an710049 China Great Bay University Dongguan523000 China
Facial Action Unit (AU) detection is a crucial task in affective computing and social robotics as it helps to identify emotions expressed through facial expressions. Anatomically, there are innumerable correlations be... 详细信息
来源: 评论
Multi-Unit Floor Plan recognition and Reconstruction Using Improved Semantic Segmentation of Raster-Wise Floor Plans
arXiv
收藏 引用
arXiv 2024年
作者: Kratochvila, Lukas de Jong, Gijs Arkesteijn, Monique Bilík, Šimon Zemčík, Tomáš Horak, Karel Rellermeyer, Jan S. Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Brno Czech Republic Department of Software Technology Faculty of Electrical Engineering Mathematics and Computer Science TU Delft Delft Netherlands Department of Management in the Built Environment Faculty of Architecture and the Built Environment TU Delft Delft Netherlands Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Lappeenranta Finland Dependable and Scalable Software Systems Institute of Systems Engineering Faculty of Electrical Engineering and Computer Science Leibniz University Hannover Hannover Germany
Digital twins have a major potential to form a significant part of urban management in emergency planning, as they allow more efficient designing of the escape routes, better orientation in exceptional situations, and... 详细信息
来源: 评论
Learning dynamical human-joint affinity for 3D pose estimation in videos
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Junhao Wang, Yali Zhou, Zhipeng Luan, Tianyu Wang, Zhe Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of California Irvine United States Shanghai AI Laboratory Shanghai China
Graph Convolution Network (GCN) has been successfully used for 3D human pose estimation in videos. However, it is often built on the fixed human-joint affinity, according to human skeleton. This may reduce adaptation ... 详细信息
来源: 评论
PProCRC: Probabilistic Collaboration of Image Patches for Fine-grained Classification
PProCRC: Probabilistic Collaboration of Image Patches for Fi...
收藏 引用
International Conference on Image and vision Computing New Zealand, IVCNZ
作者: Tapabrata Chakraborti Brendan McCane Steven Mills Umapada Pal University of Otago tapabrata mccane Computer Vision and Pattern recognition Unit Indian Statistical Institute
We present a conditional probabilistic framework for collaborative representation of image patches. It incorporates background compensation and outlier patch suppression into the main formulation itself, thus doing aw... 详细信息
来源: 评论
Attention-Driven Dynamic Graph Convolutional Network for Multi-label Image recognition  16th
Attention-Driven Dynamic Graph Convolutional Network for Mul...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Ye, Jin He, Junjun Peng, Xiaojiang Wu, Wenhao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China School of Biomedical Engineering the Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Recent studies often exploit Graph Convolutional Network (GCN) to model label dependencies to improve recognition accuracy for multi-label image recognition. However, constructing a graph by counting the label co-occu... 详细信息
来源: 评论
Digging into Uncertainty in Self-supervised Multi-view Stereo
Digging into Uncertainty in Self-supervised Multi-view Stere...
收藏 引用
International Conference on computer vision (ICCV)
作者: Hongbin Xu Zhipeng Zhou Yali Wang Wenxiong Kang Baigui Sun Hao Li Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Alibaba Group Pazhou Laboratory Shanghai AI Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论
Digging into uncertainty in self-supervised multi-view stereo
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Hongbin Zhou, Zhipeng Wang, Yali Kang, Wenxiong Sun, Baigui Li, Hao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Shanghai AI Laboratory Alibaba Group Pazhou Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论
Even big data is not enough: need for a novel reference modelling for forensic document authentication
Even big data is not enough: need for a novel reference mode...
收藏 引用
作者: Garain, Utpal Halder, Biswajit Computer Vision and Pattern Recognition Unit and Centre for Artificial Intelligence and Machine Learning Indian Statistical Institute 203 B. T. Road Kolkata700108 India Department of CSE Narula Institute of Technology Agarpara Kolkata700109 India
With the emergence of big data, deep learning (DL) approaches are becoming quite popular in many branches of science. Forensic science is no longer an exception. However, there are certain problems in forensic science... 详细信息
来源: 评论