咨询与建议

限定检索结果

文献类型

  • 421 篇 会议
  • 152 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 579 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 343 篇 工学
    • 227 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 78 篇 信息与通信工程
    • 59 篇 生物工程
    • 53 篇 机械工程
    • 49 篇 控制科学与工程
    • 40 篇 光学工程
    • 36 篇 生物医学工程(可授...
    • 24 篇 化学工程与技术
    • 20 篇 仪器科学与技术
    • 20 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 建筑学
    • 8 篇 土木工程
    • 6 篇 交通运输工程
    • 6 篇 安全科学与工程
  • 193 篇 理学
    • 84 篇 数学
    • 66 篇 物理学
    • 63 篇 生物学
    • 25 篇 化学
    • 24 篇 统计学(可授理学、...
    • 6 篇 系统科学
  • 90 篇 管理学
    • 61 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 16 篇 艺术学
    • 16 篇 设计学(可授艺术学...
  • 13 篇 医学
    • 13 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 4 篇 经济学
  • 2 篇 文学
  • 1 篇 教育学

主题

  • 86 篇 pattern recognit...
  • 84 篇 feature extracti...
  • 67 篇 image segmentati...
  • 65 篇 computer vision
  • 64 篇 handwriting reco...
  • 59 篇 character recogn...
  • 56 篇 support vector m...
  • 43 篇 training
  • 39 篇 optical characte...
  • 36 篇 shape
  • 30 篇 accuracy
  • 26 篇 writing
  • 26 篇 histograms
  • 25 篇 testing
  • 23 篇 databases
  • 19 篇 image edge detec...
  • 19 篇 text recognition
  • 17 篇 image color anal...
  • 17 篇 image recognitio...
  • 16 篇 automation

机构

  • 206 篇 computer vision ...
  • 43 篇 computer vision ...
  • 31 篇 national key lab...
  • 28 篇 faculty of compu...
  • 27 篇 shenzhen key lab...
  • 26 篇 university of ch...
  • 21 篇 siat branch shen...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 17 篇 computer vision ...
  • 15 篇 shenzhen key lab...
  • 12 篇 computer vision ...
  • 12 篇 shanghai artific...
  • 12 篇 indian statistic...
  • 10 篇 school of comput...
  • 10 篇 shanghai ai labo...
  • 9 篇 sensetime resear...
  • 8 篇 graduate school ...
  • 8 篇 national laborat...
  • 8 篇 idetic universit...

作者

  • 108 篇 umapada pal
  • 103 篇 pal umapada
  • 38 篇 b.b. chaudhuri
  • 36 篇 qiao yu
  • 30 篇 michael blumenst...
  • 30 篇 palaiahnakote sh...
  • 28 篇 blumenstein mich...
  • 27 篇 shivakumara pala...
  • 24 篇 chaudhuri b.b.
  • 22 篇 u. pal
  • 18 篇 lu tong
  • 17 篇 tong lu
  • 16 篇 chanda sukalpa
  • 16 篇 wang yali
  • 15 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 bidyut b. chaudh...
  • 13 篇 p. nagabhushan
  • 12 篇 ujjwal bhattacha...
  • 12 篇 garain utpal

语言

  • 546 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"机构=The Institute of Computer Vision and Pattern Recognition"
579 条 记 录,以下是141-150 订阅
排序:
UniFormer: Unifying Convolution and Self-attention for Visual recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Kunchang Wang, Yali Zhang, Junhao Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China National University of Singapore Singapore Shanghai Artificial Intelligence Laboratory China SenseTime Research China The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision t... 详细信息
来源: 评论
Local gradient difference features for classification of 2D-3D natural scene text images  25
Local gradient difference features for classification of 2D-...
收藏 引用
25th International Conference on pattern recognition, ICPR 2020
作者: Nandanwar, Lokesh Shivakumara, Palaiahnakote Raghavendra, Ramachandra Lu, Tong Pal, Umapada Lopresti, Daniel Anuar, Nor Badrul Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Computer Science and Engineering Lehigh University BethlehemPA United States
Methods developed for normal 2D text detection do not work well for text that is rendered using decorative, 3D effects, etc. This paper proposes a new method for classification of 2D and 3D natural scene text images s... 详细信息
来源: 评论
MTVCrafter: 4D Motion Tokenization for Open-World Human Image Animation
arXiv
收藏 引用
arXiv 2025年
作者: Ding, Yanbo Hu, Xirui Guo, Zhizhi Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China China Telecom China School of Computer Science and Technology Xi’an Jiaotong University China School of Artificial Intelligence University of Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China
Human image animation has gained increasing attention and developed rapidly due to its broad applications in digital humans. However, existing methods rely largely on 2D-rendered pose images for motion guidance, which... 详细信息
来源: 评论
Feature refinement: An expression-specific feature learning and fusion method for micro-expression recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Ling Mao, Qirong Huang, Xiaohua Zhang, Feifei Zhang, Zhihong School of Computer Science and Communication Engineering Jiangsu University ZhenjiangJiangsu212013 China School of Computer Engineering Nanjing Institute of Technology China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Xiamen University Xiamen China Center for Machine Vision and Signal Analysis University of Oulu Finland
Micro-Expression recognition has become challenging, as it is extremely difficult to extract the subtle facial changes of micro-expressions. Recently, several approaches proposed several expression-shared features alg... 详细信息
来源: 评论
LEDNet: Deep Network for Single Image Haze Removal  2018
LEDNet: Deep Network for Single Image Haze Removal
收藏 引用
Proceedings of the 11th Indian Conference on computer vision, Graphics and Image Processing
作者: Akshay Dudhane Subrahmanyam Murala Abhinav Dhall Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar India Learning Affect and Semantic Image Analysis Group Indian Institute of Technology Ropar India
Haze during the bad weather, degrades the visibility of the scene drastically. Degradation of scene visibility varies with respect to the transmission coefficient/map (Tc) of the scene. Estimation of accurate Tc is ke... 详细信息
来源: 评论
68 landmarks are efficient for 3D face alignment: What about more? 3D face alignment method applied to face recognition
TechRxiv
收藏 引用
TechRxiv 2021年
作者: Jabberi, Marwa Wali, Ali Chaudhuri, Bidyut Baran Alimi, Adel M. University of Sousse ISITCom Sousse4011 Tunisia BP 1173 Sfax3038 Tunisia Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India Department of Electrical and Electronic Engineering Science Faculty of Engineering and the Built Environment University of Johannesburg South Africa
This paper proposes a 3D face alignment of 2D face images in the wild with noisy landmarks where the objective is to recognize individuals from their single profile image. We first proceed by extracting more than 68 l... 详细信息
来源: 评论
A new journey from SDRTV to HDRTV
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Xiangyu Zhang, Zhengwen Ren, Jimmy S. Tian, Lynhoo Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai China SenseTime Research Shanghai China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China Shanghai AI Laboratory Shanghai China
Nowadays modern displays are capable to render video content with high dynamic range (HDR) and wide color gamut (WCG). However, most available resources are still in standard dynamic range (SDR). Therefore, there is a... 详细信息
来源: 评论
Investigate indistinguishable points in semantic segmentation of 3D point cloud
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Mingye Zhou, Zhipeng Zhang, Junhao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China Shanghai AI Lab Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
This paper investigates the indistinguishable points (difficult to predict label) in semantic segmentation for large-scale 3D point clouds. The indistinguishable points consist of those located in complex boundary, po... 详细信息
来源: 评论
Structure Function Based Transform Features for Behavior-Oriented Social Media Image Classification  5th
Structure Function Based Transform Features for Behavior-Ori...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Krishnani, Divya Shivakumara, Palaiahnakote Lu, Tong Pal, Umapada Ramachandra, Raghavendra International Institute of Information Technology Naya Raipur Naya RaipurChhattisgarh India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Information Technology and Electrical Engineering Norwegian University of Science and Technology Trondheim Norway
Social media has become an essential part of people to reflect their day to day activities including emotions, feelings, threatening and so on. This paper presents a new method for the automatic classification of beha... 详细信息
来源: 评论
Towards Phytoplankton Parasite Detection Using Autoencoders
arXiv
收藏 引用
arXiv 2023年
作者: Bilik, Simon Batrakhanov, Daniel Eerola, Tuomas Haraguchi, Lumi Kraft, Kaisa Van den Wyngaert, Silke Kangas, Jonna Sjöqvist, Conny Madsen, Karin Lensu, Lasse Kälviäinen, Heikki Horak, Karel Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Yliopistonkatu 34 Lappeenranta53850 Finland Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Technická 3058/10 Brno61600 Czech Republic Marine Ecology Measurements Finnish Environment Institute Agnes Sjöbergin Katu 2 Helsinki00790 Finland Department of Biology University of Turku Vesilinnantie 5 Turku20014 Finland Environmental and Marine Biology Åbo Akademi University Henrikinkatu 2 Turku20014 Finland
Phytoplankton parasites are largely understudied microbial components with a potentially significant ecological impact on phytoplankton bloom dynamics. To better understand their impact, we need improved detection met... 详细信息
来源: 评论