咨询与建议

限定检索结果

文献类型

  • 421 篇 会议
  • 152 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 579 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 343 篇 工学
    • 227 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 78 篇 信息与通信工程
    • 59 篇 生物工程
    • 53 篇 机械工程
    • 49 篇 控制科学与工程
    • 40 篇 光学工程
    • 36 篇 生物医学工程(可授...
    • 24 篇 化学工程与技术
    • 20 篇 仪器科学与技术
    • 20 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 建筑学
    • 8 篇 土木工程
    • 6 篇 交通运输工程
    • 6 篇 安全科学与工程
  • 193 篇 理学
    • 84 篇 数学
    • 66 篇 物理学
    • 63 篇 生物学
    • 25 篇 化学
    • 24 篇 统计学(可授理学、...
    • 6 篇 系统科学
  • 90 篇 管理学
    • 61 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 16 篇 艺术学
    • 16 篇 设计学(可授艺术学...
  • 13 篇 医学
    • 13 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 4 篇 经济学
  • 2 篇 文学
  • 1 篇 教育学

主题

  • 86 篇 pattern recognit...
  • 84 篇 feature extracti...
  • 67 篇 image segmentati...
  • 65 篇 computer vision
  • 64 篇 handwriting reco...
  • 59 篇 character recogn...
  • 56 篇 support vector m...
  • 43 篇 training
  • 39 篇 optical characte...
  • 36 篇 shape
  • 30 篇 accuracy
  • 26 篇 writing
  • 26 篇 histograms
  • 25 篇 testing
  • 23 篇 databases
  • 19 篇 image edge detec...
  • 19 篇 text recognition
  • 17 篇 image color anal...
  • 17 篇 image recognitio...
  • 16 篇 automation

机构

  • 206 篇 computer vision ...
  • 43 篇 computer vision ...
  • 31 篇 national key lab...
  • 28 篇 faculty of compu...
  • 27 篇 shenzhen key lab...
  • 26 篇 university of ch...
  • 21 篇 siat branch shen...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 17 篇 computer vision ...
  • 15 篇 shenzhen key lab...
  • 12 篇 computer vision ...
  • 12 篇 shanghai artific...
  • 12 篇 indian statistic...
  • 10 篇 school of comput...
  • 10 篇 shanghai ai labo...
  • 9 篇 sensetime resear...
  • 8 篇 graduate school ...
  • 8 篇 national laborat...
  • 8 篇 idetic universit...

作者

  • 108 篇 umapada pal
  • 102 篇 pal umapada
  • 38 篇 b.b. chaudhuri
  • 35 篇 qiao yu
  • 30 篇 michael blumenst...
  • 30 篇 palaiahnakote sh...
  • 28 篇 blumenstein mich...
  • 26 篇 shivakumara pala...
  • 24 篇 chaudhuri b.b.
  • 22 篇 u. pal
  • 17 篇 tong lu
  • 17 篇 lu tong
  • 16 篇 chanda sukalpa
  • 16 篇 wang yali
  • 15 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 bidyut b. chaudh...
  • 13 篇 p. nagabhushan
  • 12 篇 ujjwal bhattacha...
  • 12 篇 garain utpal

语言

  • 546 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"机构=The Institute of Computer Vision and Pattern Recognition"
579 条 记 录,以下是151-160 订阅
排序:
Structure Function Based Transform Features for Behavior-Oriented Social Media Image Classification  5th
Structure Function Based Transform Features for Behavior-Ori...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Krishnani, Divya Shivakumara, Palaiahnakote Lu, Tong Pal, Umapada Ramachandra, Raghavendra International Institute of Information Technology Naya Raipur Naya RaipurChhattisgarh India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Information Technology and Electrical Engineering Norwegian University of Science and Technology Trondheim Norway
Social media has become an essential part of people to reflect their day to day activities including emotions, feelings, threatening and so on. This paper presents a new method for the automatic classification of beha... 详细信息
来源: 评论
Local Gradient Difference Features for Classification of 2D-3D Natural Scene Text Images
Local Gradient Difference Features for Classification of 2D-...
收藏 引用
International Conference on pattern recognition
作者: Lokesh Nandanwar Palaiahnakote Shivakumara Ramachandra Raghavendra Tong Lu Umapada Pal Daniel Lopresti Nor Badrul Anuar Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Computer Science & Engineering Lehigh University Bethlehem PA USA
Methods developed for normal 2D text detection do not work well for text that is rendered using decorative, 3D effects, etc. This paper proposes a new method for classification of 2D and 3D natural scene text images s... 详细信息
来源: 评论
AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2021年
作者: Roy, Swalpa Kumar Paoletti, Mercedes E. Haut, Juan M. Dubey, Shiv Ram Kar, Purbayan Plaza, Antonio Chaudhuri, Bidyut B. The Computer Science and Engineering Alipurduar Government Engineering and Management College 736206 India The Hyperspectral Computing Laboratory Department of Technology of Computers and Communications University of Extremadura Cáceres10003 Spain The Computer Vision and Biometrics Lab Indian Institute of Information Technology Prayagraj Uttar Pradesh Allahabad211015 India The Media Analysis Group Sony Research India Private Limited Karnataka Bangalore560103 India The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India
Convolutional neural networks (CNNs) are trained using stochastic gradient descent (SGD)-based optimizers. Recently, the adaptive moment estimation (Adam) optimizer has become very popular due to its adaptive momentum... 详细信息
来源: 评论
Towards accurate scene text recognition with semantic reasoning networks
arXiv
收藏 引用
arXiv 2020年
作者: Yu, Deli Li, Xuan Zhang, Chengquan Liu, Tao Han, Junyu Liu, Jingtuo Ding, Errui School of Artificial Intelligence University of Chinese Academy of Sciences Department of Computer Vision Technology Baidu Inc National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences
Scene text image contains two levels of contents: visual texture and semantic information. Although the previous scene text recognition methods have made great progress over the past few years, the research on mining ... 详细信息
来源: 评论
Exploring the robustness of NMT systems to nonsensical inputs
arXiv
收藏 引用
arXiv 2019年
作者: Chaturvedi, Akshay Abijith, K.P. Garain, Utpal Computer Vision and Pattern Recognition Unit Indian Statistical Institute India
Neural machine translation (NMT) systems have been shown to give undesirable translation when a small change is made in the source sentence. In this paper, we study the behaviour of NMT systems when multiple changes a... 详细信息
来源: 评论
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration  16th
PIPAL: A Large-Scale Image Quality Assessment Dataset for Pe...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Jinjin, Gu Haoming, Cai Haoyu, Chen Xiaoxing, Ye Ren, Jimmy S. Chao, Dong The School of Data Science The Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SenseTime Research Science Park Hong Kong SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
Mimic and fool: a task agnostic adversarial attack
arXiv
收藏 引用
arXiv 2019年
作者: Chaturvedi, Akshay Garain, Utpal Computer Vision and Pattern Recognition Unit Indian Statistical Institute India
At present, adversarial attacks are designed in a task-specific fashion. However, for downstream computer vision tasks such as image captioning, image segmentation etc., the current deep learning systems use an image ... 详细信息
来源: 评论
A New U-Net Based License Plate Enhancement Model in Night and Day Images  5th
A New U-Net Based License Plate Enhancement Model in Night a...
收藏 引用
5th Asian Conference on pattern recognition, ACPR 2019
作者: Chowdhury, Pinaki Nath Shivakumara, Palaiahnakote Raghavendra, Ramachandra Pal, Umapada Lu, Tong Blumenstein, Michael Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Gjøvik Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Faculty of Engineering and Information Technology University of Technology Sydney Ultimo Australia
A new trend of smart city development opens up many challenges. One such issue is that automatic vehicle driving and detection for toll fee payment in night or limited light environments. This paper presents a new wor... 详细信息
来源: 评论
Regional attention with architecture-rebuilt 3D network for RGB-D gesture recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Benjia Li, Yunan Wan, Jun Macau University of Science and Technology China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China School of Computer Science and Technology Xidian Univeristy China Xi'an Key Laboratory of Big Data and Intelligent Vision China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Human gesture recognition has drawn much attention in the area of computer vision. However, the performance of gesture recognition is always influenced by some gesture-irrelevant factors like the background and the cl... 详细信息
来源: 评论
Towards Accurate Scene Text recognition With Semantic Reasoning Networks
Towards Accurate Scene Text Recognition With Semantic Reason...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Deli Yu Xuan Li Chengquan Zhang Tao Liu Junyu Han Jingtuo Liu Errui Ding School of Artificial Intelligence University of Chinese Academy of Sciences National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Department of Computer Vision Technology(VIS) Baidu Inc.
Scene text image contains two levels of contents: visual texture and semantic information. Although the previous scene text recognition methods have made great progress over the past few years, the research on mining ... 详细信息
来源: 评论