咨询与建议

限定检索结果

文献类型

  • 422 篇 会议
  • 153 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 581 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 228 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 78 篇 信息与通信工程
    • 59 篇 生物工程
    • 53 篇 机械工程
    • 51 篇 控制科学与工程
    • 40 篇 光学工程
    • 36 篇 生物医学工程(可授...
    • 24 篇 化学工程与技术
    • 21 篇 仪器科学与技术
    • 20 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 建筑学
    • 8 篇 土木工程
    • 6 篇 交通运输工程
    • 6 篇 安全科学与工程
  • 193 篇 理学
    • 84 篇 数学
    • 66 篇 物理学
    • 63 篇 生物学
    • 25 篇 化学
    • 24 篇 统计学(可授理学、...
    • 6 篇 系统科学
  • 90 篇 管理学
    • 61 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 16 篇 艺术学
    • 16 篇 设计学(可授艺术学...
  • 13 篇 医学
    • 13 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 4 篇 经济学
  • 2 篇 文学
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 86 篇 pattern recognit...
  • 84 篇 feature extracti...
  • 67 篇 image segmentati...
  • 65 篇 computer vision
  • 64 篇 handwriting reco...
  • 59 篇 character recogn...
  • 56 篇 support vector m...
  • 43 篇 training
  • 39 篇 optical characte...
  • 36 篇 shape
  • 30 篇 accuracy
  • 26 篇 writing
  • 26 篇 histograms
  • 25 篇 testing
  • 23 篇 databases
  • 19 篇 image edge detec...
  • 19 篇 text recognition
  • 17 篇 image color anal...
  • 17 篇 image recognitio...
  • 16 篇 automation

机构

  • 207 篇 computer vision ...
  • 43 篇 computer vision ...
  • 31 篇 national key lab...
  • 28 篇 shenzhen key lab...
  • 28 篇 faculty of compu...
  • 26 篇 university of ch...
  • 21 篇 siat branch shen...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 17 篇 computer vision ...
  • 15 篇 shenzhen key lab...
  • 13 篇 shanghai artific...
  • 12 篇 computer vision ...
  • 12 篇 indian statistic...
  • 10 篇 school of comput...
  • 10 篇 shanghai ai labo...
  • 9 篇 sensetime resear...
  • 8 篇 graduate school ...
  • 8 篇 national laborat...
  • 8 篇 school of artifi...

作者

  • 109 篇 umapada pal
  • 103 篇 pal umapada
  • 38 篇 b.b. chaudhuri
  • 37 篇 qiao yu
  • 30 篇 michael blumenst...
  • 30 篇 palaiahnakote sh...
  • 28 篇 blumenstein mich...
  • 27 篇 shivakumara pala...
  • 24 篇 chaudhuri b.b.
  • 22 篇 u. pal
  • 18 篇 lu tong
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 16 篇 chanda sukalpa
  • 15 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 bidyut b. chaudh...
  • 13 篇 p. nagabhushan
  • 12 篇 ujjwal bhattacha...
  • 12 篇 garain utpal

语言

  • 544 篇 英文
  • 36 篇 其他
  • 1 篇 中文
检索条件"机构=The Institute of Computer Vision and Pattern Recognition"
581 条 记 录,以下是161-170 订阅
排序:
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration  16th
PIPAL: A Large-Scale Image Quality Assessment Dataset for Pe...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Jinjin, Gu Haoming, Cai Haoyu, Chen Xiaoxing, Ye Ren, Jimmy S. Chao, Dong The School of Data Science The Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SenseTime Research Science Park Hong Kong SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
Towards Accurate Scene Text recognition With Semantic Reasoning Networks
Towards Accurate Scene Text Recognition With Semantic Reason...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Deli Yu Xuan Li Chengquan Zhang Tao Liu Junyu Han Jingtuo Liu Errui Ding School of Artificial Intelligence University of Chinese Academy of Sciences National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Department of Computer Vision Technology(VIS) Baidu Inc.
Scene text image contains two levels of contents: visual texture and semantic information. Although the previous scene text recognition methods have made great progress over the past few years, the research on mining ... 详细信息
来源: 评论
ICFHR 2020 Competition on Short answer ASsessment and Thai student SIGnature and Name COMponents recognition and Verification (SASIGCOM 2020)
ICFHR 2020 Competition on Short answer ASsessment and Thai s...
收藏 引用
International Workshop on Frontiers in Handwriting recognition
作者: Abhijit Das Hemmaphan Suwanwiwat Umapada Pal Michael Blumenstein Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Information Technology Academy James Cook University Cairns Australia School of Software University of Technology Sydney Australia
This paper describes the results of the competition on Short answer ASsessment and Thai student SIGnature and Name COMponents recognition and Verification (SASIGCOM 2020) in conjunction with the 17th International Con... 详细信息
来源: 评论
Self-slimmed vision Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Zong, Zhuofan Li, Kunchang Song, Guanglu Wang, Yali Qiao, Yu Leng, Biao Liu, Yu School of Computer Science and Engineering Beihang University China SenseTime Research China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Shanghai AI Laboratory China
vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because... 详细信息
来源: 评论
MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Srivastava, Abhishek Jha, Debesh Chanda, Sukalpa Pal, Umapada Johansen, Håvard D. Johansen, Dag Riegler, Michael A. Ali, Sharib Halvorsen, Pål Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India SimulaMet Oslo Norway UiT The Arctic University of Norway Tromsø Norway Østfold University College Halden Norway Indian Statistical Institute Kolkata India The Department of Engineering Science University of Oxford Oxford NIHR Biomedical Research Centre Oxford United Kingdom Oslo Metropolitan University Oslo Norway
Methods based on convolutional neural networks have improved the performance of biomedical image segmentation However, most of these methods cannot efficiently segment objects of variable sizes and train on small and ... 详细信息
来源: 评论
ICDAR 2019 CROHME + TFD: Competition on recognition of handwritten mathematical expressions and typeset formula detection  15
ICDAR 2019 CROHME + TFD: Competition on recognition of handw...
收藏 引用
15th IAPR International Conference on Document Analysis and recognition, ICDAR 2019
作者: Mahdavi, Mahshad Zanibbi, Richard Mouchere, Harold Viard-Gaudin, Christian Garain, Utpal Document and Pattern Recognition Lab Rochester Institute of Technology RochesterNY United States Christian Viard-Gaudin LS2N-UMR CNRS 6004 University of Nantes Nantes France Computer Vision and Pattern Recognition Unit Centre for Artif. Intel. and Mach. Leaning Indian Statistical Institute Kolkata India
We summarize the tasks, protocol, and outcome for the 6th Competition on recognition of Handwritten Mathematical Expressions (CROHME), which includes a new formula detection in document images task (+ TFD). For CROHME... 详细信息
来源: 评论
Fast Texture Synthesis via Pseudo Optimizer
Fast Texture Synthesis via Pseudo Optimizer
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Wu Shi Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Texture synthesis using deep neural networks can generate high quality and diversified textures. However, it usually requires a heavy optimization process. The following works accelerate the process by using feed-forw... 详细信息
来源: 评论
Face recognition - A one-shot learning perspective  15
Face recognition - A one-shot learning perspective
收藏 引用
15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019
作者: Chanda, Sukalpa Gv, Asish Chakrapani Brun, Anders Hast, Anders Pal, Umapada Doermann, David Department of Information Technology Østfold University College Norway Computer Vision and Pattern Recognition Unit Indian Statistical Institute India Centre for Image Analysis Uppsala University Sweden Computer Science and Engineering University at Buffalo United States
Ability to learn from a single instance is something unique to the human species and One-shot learning algorithms try to mimic this special capability. On the other hand, despite the fantastic performance of Deep Lear... 详细信息
来源: 评论
Smallbignet: Integrating core and contextual views for video classification
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xianhang Wang, Yali Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Temporal convolution has been widely used for video classification. However, it is performed on spatio-temporal contexts in a limited view, which often weakens its capacity of learning video representation. To allevia... 详细信息
来源: 评论
Collaborative Multi-View Convolutions With Gating For Accurate And Fast Volumetric Medical Image Segmentation
Collaborative Multi-View Convolutions With Gating For Accura...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Cheng Li Jin Ye Junjun He Shanshan Wang Lixu Gu Yu Qiao Paul C. Lauterbur Research Center for Biomedical Imaging SIAT CAS Shenzhen China Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab SIAT CAS Shenzhen China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Biomedical Engineering/the Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Due to their high capacity in capturing 3D spatial information, 3D Fully Convolutional Neural Networks (3D FCNs), especially 3D U-Net, are prevalent for volumetric medical image segmentation. However, 3D convolutions ... 详细信息
来源: 评论