咨询与建议

限定检索结果

文献类型

  • 421 篇 会议
  • 152 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 579 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 343 篇 工学
    • 227 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 78 篇 信息与通信工程
    • 59 篇 生物工程
    • 53 篇 机械工程
    • 49 篇 控制科学与工程
    • 40 篇 光学工程
    • 36 篇 生物医学工程(可授...
    • 24 篇 化学工程与技术
    • 20 篇 仪器科学与技术
    • 20 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 建筑学
    • 8 篇 土木工程
    • 6 篇 交通运输工程
    • 6 篇 安全科学与工程
  • 193 篇 理学
    • 84 篇 数学
    • 66 篇 物理学
    • 63 篇 生物学
    • 25 篇 化学
    • 24 篇 统计学(可授理学、...
    • 6 篇 系统科学
  • 90 篇 管理学
    • 61 篇 图书情报与档案管...
    • 35 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 16 篇 艺术学
    • 16 篇 设计学(可授艺术学...
  • 13 篇 医学
    • 13 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 4 篇 经济学
  • 2 篇 文学
  • 1 篇 教育学

主题

  • 86 篇 pattern recognit...
  • 84 篇 feature extracti...
  • 67 篇 image segmentati...
  • 65 篇 computer vision
  • 64 篇 handwriting reco...
  • 59 篇 character recogn...
  • 56 篇 support vector m...
  • 43 篇 training
  • 39 篇 optical characte...
  • 36 篇 shape
  • 30 篇 accuracy
  • 26 篇 writing
  • 26 篇 histograms
  • 25 篇 testing
  • 23 篇 databases
  • 19 篇 image edge detec...
  • 19 篇 text recognition
  • 17 篇 image color anal...
  • 17 篇 image recognitio...
  • 16 篇 automation

机构

  • 206 篇 computer vision ...
  • 43 篇 computer vision ...
  • 31 篇 national key lab...
  • 28 篇 faculty of compu...
  • 27 篇 shenzhen key lab...
  • 26 篇 university of ch...
  • 21 篇 siat branch shen...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 17 篇 computer vision ...
  • 15 篇 shenzhen key lab...
  • 12 篇 computer vision ...
  • 12 篇 shanghai artific...
  • 12 篇 indian statistic...
  • 10 篇 school of comput...
  • 10 篇 shanghai ai labo...
  • 9 篇 sensetime resear...
  • 8 篇 graduate school ...
  • 8 篇 national laborat...
  • 8 篇 idetic universit...

作者

  • 108 篇 umapada pal
  • 102 篇 pal umapada
  • 38 篇 b.b. chaudhuri
  • 35 篇 qiao yu
  • 30 篇 michael blumenst...
  • 30 篇 palaiahnakote sh...
  • 28 篇 blumenstein mich...
  • 26 篇 shivakumara pala...
  • 24 篇 chaudhuri b.b.
  • 22 篇 u. pal
  • 17 篇 tong lu
  • 17 篇 lu tong
  • 16 篇 chanda sukalpa
  • 16 篇 wang yali
  • 15 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 bidyut b. chaudh...
  • 13 篇 p. nagabhushan
  • 12 篇 ujjwal bhattacha...
  • 12 篇 garain utpal

语言

  • 546 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"机构=The Institute of Computer Vision and Pattern Recognition"
579 条 记 录,以下是51-60 订阅
排序:
Non-Uniform Illumination Attack for Fooling Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Jain, Akshay Dubey, Shiv Ram Singh, Satish Kumar Santosh, K.C. Chaudhuri, Bidyut Baran The Computer Vision and Biometrics Lab Department of Information Technology Indian Institute of Information Technology Allahabad Uttar Pradesh Prayagraj211015 India The AI Research Lab Department of Computer Science University of South Dakota VermillionSD57069 United States The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India
Convolutional Neural Networks (CNNs) have made remarkable strides;however, they remain susceptible to vulnerabilities, particularly in the face of minor image perturbations that humans can easily recognize. This weakn... 详细信息
来源: 评论
KV Inversion: KV Embeddings Learning for Text-Conditioned Real Image Action Editing
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Qin, Jin Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Text-conditioned image editing is a recently emerged and highly practical task, and its potential is immeasurable. However, most of the concurrent methods are unable to perform action editing, i.e. they can not produc... 详细信息
来源: 评论
Bootstrap Diffusion Model Curve Estimation for High Resolution Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Learning-based methods have attracted a lot of research attention and led to significant improvements in low-light image enhancement. However, most of them still suffer from two main problems: expensive computational ... 详细信息
来源: 评论
DAPlankton: Benchmark Dataset For Multi-Instrument Plankton recognition Via Fine-Grained Domain Adaptation
DAPlankton: Benchmark Dataset For Multi-Instrument Plankton ...
收藏 引用
IEEE International Conference on Image Processing
作者: Daniel Batrakhanov Tuomas Eerola Kaisa Kraft Lumi Haraguchi Lasse Lensu Sanna Suikkanen María Teresa Camarena-Gómez Jukka Seppälä Heikki Kälviäinen Computer Vision and Pattern Recognition Laboratory LUT University Finland Research Infrastructure Finnish Environment Institute Finland Marine and Freshwater Solutions Finnish Environment Institute Finland Centro Oceanografico de Malaga Instituto Español de Oceanografia Spain
Plankton recognition provides novel possibilities to study various environmental aspects and an interesting real-world context to develop domain adaptation (DA) methods. Different imaging instruments cause domain shif... 详细信息
来源: 评论
DAPLANKTON: BENCHMARK DATASET FOR MULTI-INSTRUMENT PLANKTON recognition VIA FINE-GRAINED DOMAIN ADAPTATION
arXiv
收藏 引用
arXiv 2024年
作者: Batrakhanov, Daniel Eerola, Tuomas Kraft, Kaisa Haraguchi, Lumi Lensu, Lasse Suikkanen, Sanna Camarena-Gómez, María Teresa Seppälä, Jukka Kälviäinen, Heikki Computer Vision and Pattern Recognition Laboratory LUT University Finland Research Infrastructure Finnish Environment Institute Finland Marine and Freshwater Solutions Finnish Environment Institute Finland Centro Oceanografico de Malaga Instituto Español de Oceanografia Spain
Plankton recognition provides novel possibilities to study various environmental aspects and an interesting real-world context to develop domain adaptation (DA) methods. Different imaging instruments cause domain shif... 详细信息
来源: 评论
A New U-Net Based System for Multi-Cultural Wedding Image Classification
SSRN
收藏 引用
SSRN 2023年
作者: Shivakumara, Palaiahnakote Kumar, C. Pavan Nemade, Jagrut J. Michael, Kshitiz Kumar, Akash Anami, Basavaraj S. Pal, Umapada Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Indian Institute of Information Technology Dharwad India KLE Institute of Technology India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
Use of social media for communication, sharing expressing views, broadcasting news, threatening and blackmailing has become an integral part of society. One such activity is understanding multi-cultural wedding images... 详细信息
来源: 评论
Bengali Place Name recognition - Comparative Analysis Using Different CNN Architectures  5th
Bengali Place Name Recognition - Comparative Analysis Using ...
收藏 引用
5th International Conference on computer vision and Image Processing, CVIP 2020
作者: Prasad, Prashant Kumar Banerjee, Pamela Chanda, Sukalpa Pal, Umapada RCC Institute of Information Technology Kolkata India Department of Information Technology Østfold University College Halden Norway Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
Optical Character recognition (OCR) has been deployed in the past in different application areas such as automatic transcription and indexing of document images, reading aid for the visually impaired persons, postal a... 详细信息
来源: 评论
TransDocUNet: A Transformer-based UNet Architecture for Degraded Document Image Binarization  23
TransDocUNet: A Transformer-based UNet Architecture for Degr...
收藏 引用
Proceedings of the Fourteenth Indian Conference on computer vision, Graphics and Image Processing
作者: Risab Biswas Soumik Sarkhel Swalpa Kumar Roy Umapada Pal Artificial Intelligence Group Optiks Innovations Pvt. Ltd. (P360) India Department of Computer Science and Engineering Alipurduar Government Engineering and Management College India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
The enhancement of historical document images is critical for improving the quality and legibility of scanned or captured document images. Convolutional-based techniques previously generated competitive results for do... 详细信息
来源: 评论
Effective Document Image Enhancement Using tokens-to-token Transformer Network
SSRN
收藏 引用
SSRN 2023年
作者: Biswas, Risab Roy, Swalpa Kumar Pal, Umapada Maharashtra Mumbai400066 India Department of Computer Science and Engineering Jalpaiguri Government Engineering College West Bengal735102 India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India
Document image enhancement is a fundamental and important stage for attaining the best performance in any document analysis assignment because there are many degradation situations that could harm document images, mak... 详细信息
来源: 评论
Matching individual Ladoga ringed seals across short-term image sequences (vol 102, pg 957, 2022)
收藏 引用
MAMMALIAN BIOLOGY 2022年 第3期102卷 1045-1045页
作者: Nepovinnykh, E. Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering School of Engineering Science Lappeenranta-Lahti University of Technology LUT Lappeenranta Finland Department of Artificial Intelligence Institute of Computer Science and Technology Peter the Great St. Petersburg Polytechnic University Saint Petersburg Russian Federation Department of Computer Science and Computational Experiment Southern Federal University Rostov-on-Don Russian Federation Interregional Charitable Public Organization “Biologists for Nature Conservation” (BFNC) Saint Petersburg Russian Federation
Automated wildlife reidentification has attracted increasing attention in recent years as it provides a non-invasive tool to identify and to track individual wild animals over time. In this paper, the first steps are ... 详细信息
来源: 评论