咨询与建议

限定检索结果

文献类型

  • 637 篇 期刊文献
  • 557 篇 会议
  • 1 册 图书

馆藏范围

  • 1,195 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 846 篇 工学
    • 573 篇 计算机科学与技术...
    • 470 篇 软件工程
    • 196 篇 信息与通信工程
    • 112 篇 生物工程
    • 88 篇 光学工程
    • 83 篇 控制科学与工程
    • 78 篇 电气工程
    • 74 篇 化学工程与技术
    • 72 篇 生物医学工程(可授...
    • 71 篇 电子科学与技术(可...
    • 44 篇 机械工程
    • 29 篇 交通运输工程
    • 28 篇 材料科学与工程(可...
    • 28 篇 建筑学
    • 27 篇 动力工程及工程热...
    • 26 篇 土木工程
    • 25 篇 仪器科学与技术
  • 436 篇 理学
    • 198 篇 数学
    • 127 篇 生物学
    • 119 篇 物理学
    • 63 篇 统计学(可授理学、...
    • 51 篇 化学
    • 24 篇 系统科学
  • 204 篇 管理学
    • 109 篇 图书情报与档案管...
    • 107 篇 管理科学与工程(可...
    • 28 篇 工商管理
  • 58 篇 医学
    • 53 篇 临床医学
    • 39 篇 基础医学(可授医学...
    • 25 篇 药学(可授医学、理...
  • 31 篇 法学
    • 26 篇 社会学
  • 20 篇 农学
  • 15 篇 经济学
  • 11 篇 教育学
  • 3 篇 文学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 38 篇 semantics
  • 31 篇 feature extracti...
  • 24 篇 deep learning
  • 23 篇 machine learning
  • 22 篇 training
  • 20 篇 object detection
  • 19 篇 forecasting
  • 16 篇 deep neural netw...
  • 14 篇 task analysis
  • 13 篇 contrastive lear...
  • 12 篇 conferences
  • 12 篇 data mining
  • 10 篇 neural networks
  • 10 篇 computational mo...
  • 10 篇 classification (...
  • 10 篇 data models
  • 9 篇 image segmentati...
  • 9 篇 optimization
  • 9 篇 graph neural net...
  • 9 篇 benchmarking

机构

  • 42 篇 school of cyber ...
  • 38 篇 university of ch...
  • 35 篇 school of comput...
  • 30 篇 national enginee...
  • 28 篇 hubei key labora...
  • 28 篇 hubei engineerin...
  • 27 篇 services computi...
  • 26 篇 cluster and grid...
  • 23 篇 school of inform...
  • 22 篇 pazhou lab
  • 22 篇 sjtu-pinghu inst...
  • 19 篇 school of softwa...
  • 18 篇 key lab of data ...
  • 18 篇 department of co...
  • 17 篇 school of inform...
  • 16 篇 fujian provincia...
  • 15 篇 state key lab of...
  • 15 篇 research center ...
  • 14 篇 school of softwa...
  • 14 篇 zhejiang lab

作者

  • 31 篇 jin hai
  • 28 篇 li xirong
  • 22 篇 hai jin
  • 21 篇 liu jun
  • 20 篇 hu shengshan
  • 19 篇 zhou linjie
  • 18 篇 chen jianping
  • 18 篇 lu liangjun
  • 15 篇 zhang leo yu
  • 14 篇 pan jeng-shyang
  • 14 篇 chen hong
  • 13 篇 li cuiping
  • 13 篇 zhou ziqi
  • 13 篇 li minghui
  • 11 篇 zhang lingling
  • 10 篇 jia weijia
  • 10 篇 wan wei
  • 10 篇 yang gang
  • 9 篇 li jingbing
  • 9 篇 xue xingsi

语言

  • 1,092 篇 英文
  • 94 篇 其他
  • 9 篇 中文
检索条件"机构=The Key Lab of Data Engineering and Kowledge Engineering"
1195 条 记 录,以下是821-830 订阅
排序:
Identifying and pruning redundant structures for deep neural networks  34
Identifying and pruning redundant structures for deep neural...
收藏 引用
34th IEEE International Conference on Visual Communications and Image Processing, VCIP 2019
作者: Gan, Wenyao Song, Li Chen, Li Xie, Rong Gu, Xiao Shanghai Jiao Tong University Institute of Image Communication and Network Engineering China Shanghai Institute for Advanced Communication and Data Science Shanghai200240 China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Deep convolutional neural networks have achieved considerable success in the field of computer vision. However, it is difficult to deploy state-of-The-Art models on resource-constrained platforms due to their high sto... 详细信息
来源: 评论
Binary neural networks: A survey
arXiv
收藏 引用
arXiv 2020年
作者: Qin, Haotong Gong, Ruihao Liu, Xianglong Bai, Xiao Song, Jingkuan Sebe, Nicu State Key Lab of Software Development Environment Beihang University Beijing China Beijing Advanced Innovation Center for Big Data-Based Precision Medicine Beihang University Beijing China Center for Future Media School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu China Department of Information Engineering and Computer Science University of Trento Trento Italy School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Jiangxi Research Institute Beihang University Beijing China
The binary neural network, largely saving the storage and computation, serves as a promising technique for deploying deep models on resource-limited devices. However, the binarization inevitably causes severe informat... 详细信息
来源: 评论
Learning to augment expressions for few-shot fine-grained facial expression recognition
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wenxuan Fu, Yanwei Sun, Qiang Chen, Tao Cao, Chenjie Zheng, Ziqi Xu, Guoqiang Qiu, Han Jiang, Yu-Gang Xue, Xiangyang School of Computer Science Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai China School of Data Science Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai China Academy for Engineering & Technology Fudan University Shanghai China School of Information Science and Technology Fudan University Shanghai China Ping An OneConnect Shanghai China
—Affective computing and cognitive theory are widely used in modern human-computer interaction scenarios. Human faces, as the most prominent and easily accessible features, have attracted great attention from researc... 详细信息
来源: 评论
Climatic and Biotic Controls of Evapotranspiration Across Grassland Ecosystems on Tibetan Plateau
SSRN
收藏 引用
SSRN 2023年
作者: Peng, Siyuan Yang, Yue Luo, Dengnan Zeng, Xiang Liang, Minqi Tao, Long Zhang, Guangru Li, Pan Liao, Weijie Guo, Qun Cao, Ruochen Li, Yuzhe Zhang, Weirong Hu, Zhongmin School of Geography South China Normal University Shipai Campus Guangzhou510631 China Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation School of Ecology and Environment Hainan University Haikou570228 China Center for Eco-Environment Restoration Engineering of Hainan Province Hainan University Haikou570228 China Facility of Geographical Science Beijing Normal University Beijing100875 China Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology Beijing Normal University Zhuhai519087 China School of Atmospheric Sciences Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle Sun Yat-sen University Guangdong Zhuhai510245 China Key Lab of Ecosystem Network Observation and Modeling Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing100101 China College of Resources and Environment University of Chinese Academy of Sciences Beijing101408 China International Institute for Earth System Sciences Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application Nanjing University Jiangsu210023 China Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources School of Geography and Ocean Science Nanjing University Jiangsu210023 China Key Laboratory of Land Surface Pattern and Simulation Institute of Geographical Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
Accurately quantifying spatiotemporal variations in evapotranspiration (ET) and its components on Tibetan Plateau (TP) is crucial for understanding the regional water cycle and energy balance. However, the determinant... 详细信息
来源: 评论
On dynamic time division duplex transmissions for small cell networks
arXiv
收藏 引用
arXiv 2020年
作者: Ding, Ming López-Pérez, David Xue, Ruiqi Vasilakos, Athanasios V. Chen, Wen Data 61 Australia Bell Labs Alcatel- Lucent Ireland Shanghai Jiao Tong University China Department of Computer Science Electrical and Space Engineering Lule17University of Technology Sweden Shanghai Key Lab of Navigation and Location Based Services Shanghai Jiao Tong University School of Electronic Engineering and Automation Guilin University of Electronic Technology China
Motivated by the promising benefits of dynamic Time Division Duplex (TDD), in this paper, we use a unified framework to investigate both the technical issues of applying dynamic TDD in homogeneous small cell networks ... 详细信息
来源: 评论
ZSTAD: Zero-Shot Temporal Activity Detection
ZSTAD: Zero-Shot Temporal Activity Detection
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Lingling Zhang Xiaojun Chang Jun Liu Minnan Luo Sen Wang Zongyuan Ge Alexander Hauptmann School of Computer Science and Technology Xi'an Jiaotong University Xian China Ministry of Education Key Lab For Intelligent Networks and Network Security Xian China Faculty of Information Technology Monash University Australia National Engineering Lab for Big Data Analytics Xi'an Jiaotong University Xian China School of Information Technology and Electrical Engineering The University of Queensland Australia School of Computer Science Carnegie Mellon University USA
An integral part of video analysis and surveillance is temporal activity detection, which means to simultaneously recognize and localize activities in long untrimmed videos. Currently, the most effective methods of te... 详细信息
来源: 评论
On-edge multi-task transfer learning: Model and practice with data-driven task allocation
arXiv
收藏 引用
arXiv 2021年
作者: Zheng, Zimu Chen, Qiong Hu, Chuang Wang, Dan Liu, Fangming The National Engineering Research Center for Big Data Technology and System Key Laboratory of Services Computing Technology and System Ministry of Education School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China The Edge Cloud Innovation Lab. Technical Innovation Department Cloud BU Huawei Technologies Co. Ltd. Shenzhen China The Department of Computing Hong Kong Polytechnic University Kowloon Hong Kong Hong Kong
On edge devices, data scarcity occurs as a common problem where transfer learning serves as a widely-suggested remedy. Nevertheless, transfer learning imposes heavy computation burden to the resource-constrained edge ... 详细信息
来源: 评论
A study on the uncertainty of convolutional layers in deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University ShenzhenGuangdong518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
This paper shows a Min-Max property existing in the connection weights of the convolutional layers in a neural network structure, i.e., the LeNet. Specifically, the Min-Max property means that, during the back propaga... 详细信息
来源: 评论
Syntax-enhanced Pre-trained model
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Zenan Guo, Daya Tang, Duyu Su, Qinliang Shou, Linjun Gong, Ming Zhong, Wanjun Quan, Xiaojun Jiang, Daxin Duan, Nan School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Microsoft Research Asia Beijing China Microsoft Search Technology Center Asia Beijing China Guangdong Key Laboratory Big Data Analysis and Processing Guangzhou China Key Lab. of Machine Intelligence and Advanced Computing Ministry of Education China
We study the problem of leveraging the syntactic structure of text to enhance pre-trained models such as BERT and RoBERTa. Existing methods utilize syntax of text either in the pre-training stage or in the fine-tuning... 详细信息
来源: 评论
ReS2TIM: Reconstruct Syntactic Structures from Table Images
ReS2TIM: Reconstruct Syntactic Structures from Table Images
收藏 引用
International Conference on Document Analysis and Recognition
作者: Wenyuan Xue Qingyong Li Dacheng Tao Beijing Key Lab of Transportation Data Analysis and Mining Beijing Jiaotong University China Faculty of Engineering The University of Sydney Australia
Tables often represent densely packed but structured data. Understanding table semantics is vital for effective information retrieval and data mining. Unlike web tables, whose semantics are readable directly from mark... 详细信息
来源: 评论