咨询与建议

限定检索结果

文献类型

  • 1,067 篇 会议
  • 997 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 2,066 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,367 篇 工学
    • 895 篇 计算机科学与技术...
    • 697 篇 软件工程
    • 440 篇 信息与通信工程
    • 196 篇 电子科学与技术(可...
    • 181 篇 电气工程
    • 134 篇 控制科学与工程
    • 94 篇 光学工程
    • 82 篇 网络空间安全
    • 81 篇 生物工程
    • 78 篇 机械工程
    • 74 篇 仪器科学与技术
    • 59 篇 动力工程及工程热...
    • 41 篇 建筑学
    • 40 篇 生物医学工程(可授...
    • 38 篇 化学工程与技术
    • 37 篇 交通运输工程
    • 36 篇 土木工程
    • 35 篇 航空宇航科学与技...
  • 607 篇 理学
    • 385 篇 数学
    • 136 篇 物理学
    • 129 篇 统计学(可授理学、...
    • 91 篇 生物学
    • 45 篇 系统科学
    • 39 篇 化学
  • 364 篇 管理学
    • 212 篇 管理科学与工程(可...
    • 160 篇 图书情报与档案管...
    • 84 篇 工商管理
  • 56 篇 法学
    • 45 篇 社会学
  • 34 篇 医学
    • 31 篇 临床医学
  • 27 篇 经济学
    • 27 篇 应用经济学
  • 16 篇 农学
  • 13 篇 军事学
  • 6 篇 文学
  • 5 篇 教育学
  • 4 篇 艺术学

主题

  • 74 篇 feature extracti...
  • 65 篇 semantics
  • 60 篇 accuracy
  • 51 篇 computational mo...
  • 48 篇 cryptography
  • 44 篇 protocols
  • 43 篇 training
  • 40 篇 wireless sensor ...
  • 37 篇 federated learni...
  • 35 篇 deep learning
  • 33 篇 privacy
  • 30 篇 servers
  • 30 篇 machine learning
  • 30 篇 data models
  • 29 篇 clustering algor...
  • 28 篇 computer network...
  • 27 篇 information secu...
  • 26 篇 data mining
  • 25 篇 laboratories
  • 24 篇 routing

机构

  • 216 篇 shandong provinc...
  • 162 篇 school of comput...
  • 160 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 71 篇 state key labora...
  • 60 篇 key laboratory o...
  • 59 篇 college of infor...
  • 59 篇 key laboratory o...
  • 53 篇 shandong fundame...
  • 45 篇 key laboratory o...
  • 42 篇 shandong enginee...
  • 42 篇 the key laborato...
  • 41 篇 state key labora...
  • 41 篇 state key labora...
  • 41 篇 school of comput...
  • 41 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 33 篇 school of inform...
  • 30 篇 school of cyber ...
  • 27 篇 state key labora...

作者

  • 43 篇 ren jiadong
  • 40 篇 guo hong
  • 37 篇 zhou deyu
  • 32 篇 jianfeng ma
  • 28 篇 zhang min-ling
  • 27 篇 min-ling zhang
  • 26 篇 ma jianfeng
  • 26 篇 hu yupu
  • 21 篇 yang yang
  • 20 篇 han zhu
  • 20 篇 zhang yichen
  • 20 篇 guang cheng
  • 18 篇 hui li
  • 18 篇 ma jian-feng
  • 17 篇 yu song
  • 17 篇 xiaoming wu
  • 17 篇 xiaoping li
  • 17 篇 he yulan
  • 17 篇 huang chongwen
  • 16 篇 geng xin

语言

  • 1,817 篇 英文
  • 143 篇 其他
  • 110 篇 中文
检索条件"机构=The Key Laboratory for Computer Networks and Information Integration"
2066 条 记 录,以下是401-410 订阅
排序:
Joint Extraction of Entities and Relationships from Cyber Threat Intelligence based on Task-specific Fourier Network
Joint Extraction of Entities and Relationships from Cyber Th...
收藏 引用
International Joint Conference on Neural networks (IJCNN)
作者: Haiqing Lv Xiaohui Han Hui Cui Peipei Wang Wenbo Zuo Yang Zhou Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center (National Supercomputer Center in Jinan) Qilu University of Technology (Shandong Academy of Sciences) Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China Quan Cheng Laboratory Jinan China
The increasing complexity of cyber threats and the emergence of new attack technologies have brought huge challenges to attack incident analysis and source tracing. Using cyber threat intelligence to build a Cyber sec... 详细信息
来源: 评论
Long-Tail Learning with Foundation Model: Heavy Fine-Tuning Hurts
arXiv
收藏 引用
arXiv 2023年
作者: Jiang-Xin, Shi Tong, Wei Zhi, Zhou Jie-Jing, Shao Xin-Yan, Han Yu-Feng, Li National Key Laboratory for Novel Software Technology Nanjing University China School of Artificial Intelligence Nanjing University China School of Computer Science and Engineering Southeast University China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China
The fine-tuning paradigm in addressing long-tail learning tasks has sparked significant interest since the emergence of foundation models. Nonetheless, how fine-tuning impacts performance in long-tail learning was not... 详细信息
来源: 评论
Adaptive group personalization for federated mutual transfer learning  24
Adaptive group personalization for federated mutual transfer...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Haoqing Xu Dian Shen Meng Wang Beilun Wang School of Computer Science and Engineering Southeast University Nanjing China School of Computer Science and Engineering Southeast University Nanjing China and Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education China College of Design and Innovation Tongji University Shanghai China
Mutual transfer learning aims to improve prediction with knowledge from related domains. Recently, federated learning is applied in this field to address the communication and privacy concerns. However, previous clust...
来源: 评论
A Knowledge Distillation-Driven Lightweight CNN Model for Detecting Malicious Encrypted Network Traffic
A Knowledge Distillation-Driven Lightweight CNN Model for De...
收藏 引用
International Joint Conference on Neural networks (IJCNN)
作者: Yuecheng Wen Xiaohui Han Wenbo Zuo Weihua Liu Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center (National Supercomputer Center in Jinan) Qilu University of Technology (Shandong Academy of Sciences) Jinan China Quancheng Provincial Laboratory Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China
In the realm of cybersecurity, efficiently and precisely identifying and mitigating potential threats from malicious encrypted traffic is crucial. As deep learning evolves, methods relying on Convolutional Neural Netw... 详细信息
来源: 评论
An Effective CU Depth Decision Method for HEVC Using Machine Learning
收藏 引用
computer Systems Science & Engineering 2021年 第11期39卷 275-286页
作者: Xuan Sun Pengyu Liu Xiaowei Jia Kebin Jia Shanji Chen Yueying Wu Beijing University of Technology Beijing100124China Beijing Laboratory of Advanced Information Networks Beijing100124China Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing100124China Department of Computer Science University of PittsburghPittsburgh15260USA School of Physics and Electronic Information Engineering Qinghai Nationalities University810007QinghaiChina
This paper presents an effective machine learning-based depth selection algorithm for CTU(Coding Tree Unit)in HEVC(High Efficiency Video Coding).Existing machine learning methods are limited in their ability in handli... 详细信息
来源: 评论
PTGFI: A Prompt-Based Two-Stage Generative Framework for Function Name Inference
PTGFI: A Prompt-Based Two-Stage Generative Framework for Fun...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Menglu Wang Xiaohui Han Peipei Wang Wenbo Zuo Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center (National Supercomputer Center in Jinan) Qilu University of Technology (Shandong Academy of Sciences) Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China Quan Cheng Laboratory Jinan China
In the field of cybersecurity, analyzing malicious software or programs is crucial for preventing network attacks. Malicious code often exists in a stripped binary form to thwart analysis, presenting challenges for an... 详细信息
来源: 评论
Transformer-based Multi-Instance Learning for Weakly Supervised Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Zhaofei Zhang, Weijia Zhang, Min-Ling School of Computer Science and Engineering Southeast University Nanjing210096 China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China School of Information and Physical Sciences The University of Newcastle CallaghanNSW2308 Australia
Weakly Supervised Object Detection (WSOD) enables the training of object detection models using only image-level annotations. State-of-the-art WSOD detectors commonly rely on multi-instance learning (MIL) as the backb... 详细信息
来源: 评论
Multi-dimensional classification via stacked dependency exploitation
收藏 引用
Science China(information Sciences) 2020年 第12期63卷 104-117页
作者: Bin-Bin JIA Min-Ling ZHANG School of Computer Science and Engineering Southeast University College of Electrical and Information Engineering Lanzhou University of Technology Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of EducationChina Collaborative Innovation Center of Wireless Communications Technology
Multi-dimensional classification(MDC) aims to build classification models for multiple heterogenous class spaces simultaneously, where each class space characterizes the semantics of an object w.r.t. one specific dime... 详细信息
来源: 评论
Disambiguated Attention Embedding for Multi-Instance Partial-Label Learning
arXiv
收藏 引用
arXiv 2023年
作者: Tang, Wei Zhang, Weijia Zhang, Min-Ling School of Computer Science and Engineering Southeast University Nanjing210096 China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China School of Information and Physical Sciences The University of Newcastle CallaghanNSW2308 Australia
In many real-world tasks, the concerned objects can be represented as a multi-instance bag associated with a candidate label set, which consists of one ground-truth label and several false positive labels. Multi-insta... 详细信息
来源: 评论
Improving Vision Transformers with Nested Multi-head Attentions
Improving Vision Transformers with Nested Multi-head Attenti...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Jiquan Peng Chaozhuo Li Yi Zhao Yuting Lin Xiaohan Fang Jibing Gong School of Information Science and Engineering Yanshan University Qinhuangdao China The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province Microsoft Research Asia Beijing China
Vision transformers have significantly advanced the field of computer vision in recent years. The cornerstone of these transformers is the multi-head attention mechanism, which models interactions between visual eleme...
来源: 评论