咨询与建议

限定检索结果

文献类型

  • 1,082 篇 会议
  • 940 篇 期刊文献

馆藏范围

  • 2,022 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,304 篇 工学
    • 904 篇 计算机科学与技术...
    • 753 篇 软件工程
    • 319 篇 信息与通信工程
    • 194 篇 控制科学与工程
    • 175 篇 生物工程
    • 169 篇 电气工程
    • 107 篇 光学工程
    • 97 篇 电子科学与技术(可...
    • 90 篇 机械工程
    • 89 篇 生物医学工程(可授...
    • 76 篇 化学工程与技术
    • 59 篇 仪器科学与技术
    • 58 篇 交通运输工程
    • 54 篇 土木工程
    • 52 篇 动力工程及工程热...
    • 49 篇 建筑学
    • 46 篇 网络空间安全
    • 38 篇 安全科学与工程
  • 716 篇 理学
    • 388 篇 数学
    • 198 篇 生物学
    • 164 篇 物理学
    • 118 篇 统计学(可授理学、...
    • 92 篇 化学
    • 56 篇 系统科学
  • 365 篇 管理学
    • 220 篇 管理科学与工程(可...
    • 163 篇 图书情报与档案管...
    • 70 篇 工商管理
  • 97 篇 医学
    • 79 篇 临床医学
    • 61 篇 基础医学(可授医学...
  • 56 篇 法学
    • 42 篇 社会学
  • 41 篇 农学
  • 29 篇 经济学
  • 26 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 71 篇 feature extracti...
  • 68 篇 training
  • 67 篇 semantics
  • 65 篇 deep learning
  • 45 篇 predictive model...
  • 43 篇 computational mo...
  • 38 篇 data models
  • 34 篇 accuracy
  • 33 篇 convolution
  • 32 篇 contrastive lear...
  • 31 篇 neural networks
  • 29 篇 machine learning
  • 28 篇 graph neural net...
  • 27 篇 object detection
  • 24 篇 reinforcement le...
  • 24 篇 convolutional ne...
  • 22 篇 conferences
  • 22 篇 forecasting
  • 21 篇 task analysis
  • 21 篇 speech processin...

机构

  • 69 篇 key laboratory o...
  • 55 篇 school of comput...
  • 54 篇 south china univ...
  • 46 篇 school of softwa...
  • 40 篇 school of electr...
  • 39 篇 jiangsu key labo...
  • 39 篇 national enginee...
  • 37 篇 jiangsu key labo...
  • 36 篇 key laboratory o...
  • 35 篇 hunan provincial...
  • 35 篇 chongqing key la...
  • 32 篇 key laboratory o...
  • 31 篇 college of big d...
  • 31 篇 key laboratory o...
  • 31 篇 peng cheng labor...
  • 30 篇 school of comput...
  • 30 篇 jiangsu key labo...
  • 28 篇 chongqing key la...
  • 26 篇 beijing key labo...
  • 26 篇 university of ch...

作者

  • 41 篇 wang guoyin
  • 38 篇 xu xiaolong
  • 36 篇 tan mingkui
  • 27 篇 xiaolong xu
  • 24 篇 huang qingming
  • 23 篇 shen linlin
  • 22 篇 xu qianqian
  • 21 篇 hongyan ma
  • 19 篇 chen huajun
  • 17 篇 xia shuyin
  • 16 篇 yang zhiyong
  • 16 篇 wu qingyao
  • 16 篇 miao qiguang
  • 16 篇 liu yiwen
  • 15 篇 cai yi
  • 13 篇 shang mingsheng
  • 13 篇 shutian liu
  • 13 篇 xianda hou
  • 13 篇 xue xingsi
  • 13 篇 changhong mi

语言

  • 1,836 篇 英文
  • 161 篇 其他
  • 34 篇 中文
  • 2 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=The Key Laboratory of Big Data and Intelligent Robots"
2022 条 记 录,以下是1501-1510 订阅
排序:
Modeling Transition Matrix for a Collaborative Rating Prediction Recommendation System via Nonnegative Tensor Decomposition
Modeling Transition Matrix for a Collaborative Rating Predic...
收藏 引用
International Conference on Computer Science & Education (ICCSE)
作者: Zhehao Zhou Shenbao Yu Jiewen Guan Bilian Chen Langcai Cao Department of Automation Xiamen University Xiamen Key Laboratory of Big Data Intelligent Analysis and Decision Xiamen China
We investigate the problem of user preferences changing over time for a collaborative rating prediction recommendation system. The rating data of a time-aware collaborative recommendation can be represented as a 3rd o... 详细信息
来源: 评论
Asynchronous Activity Detection for Cell-Free Massive MIMO: From Centralized to Distributed Algorithms
arXiv
收藏 引用
arXiv 2022年
作者: Li, Yang Lin, Qingfeng Liu, Ya-Feng Ai, Bo Wu, Yik-Chung Shenzhen Research Institute of Big Data Shenzhen518172 China State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Beijing100044 China The Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong The State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China Peng Cheng Laboratory Shenzhen518055 China Henan Joint International Research Laboratory of Intelligent Networking and Data Analysis Zhengzhou University Zhengzhou450001 China
Device activity detection in the emerging cell-free massive multiple-input multiple-output (MIMO) systems has been recognized as a crucial task in machine-type communications, in which multiple access points (APs) joi... 详细信息
来源: 评论
An intelligent Resource Scheduling Method with Edge Channel Deployment for BPM
An Intelligent Resource Scheduling Method with Edge Channel ...
收藏 引用
Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, UIC-ATC
作者: Bowen Liu Wanchun Dou Xiaokang Zhou Xuyun Zhang Lianyong Qi Fei Dai Chaochao Chen State Key Laboratory for Novel Software Technology Nanjing University Nanjing China Faculty of Data Science Shiga University Hikone Japan Department of Computing Macquarie University Sydney Australia College of Computer and Software China University of Petroleum (East China) Qingdao China College of Big Data and Intelligent Engineering Southwest Forestry University Kunming China College of Computer Science and Technology Zhejiang University Hangzhou China
Edge computing is a novel computing paradigm that offers kinds of resources at the network edge. In edge computing, terminal users are connected to edge servers via the wireless network and there are various channels ...
来源: 评论
Meet Changes with Constancy: Learning Invariance in Multi-Source Translation  28
Meet Changes with Constancy: Learning Invariance in Multi-So...
收藏 引用
28th International Conference on Computational Linguistics, COLING 2020
作者: Liu, Jianfeng Luo, Ling Ao, Xiang Song, Yan Xu, Haoran Ye, Jian Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences China Beijing Key Laboratory of Mobile Computing and Pervasive Device China Key Laboratory of Intelligent Information Processing Chinese Academy of Sciences China The Chinese University of HongKong Shenzhen China Shenzhen Research Institute of Big Data China
Multi-source neural machine translation aims to translate from parallel sources of information (e.g. languages, images, etc.) to a single target language, which has shown better performance than most one-to-one system... 详细信息
来源: 评论
Non-invasive estimation of pulmonary hypertension and clinical deterioration risk in pediatric congenital heart disease:Development and validation of predictive tools
收藏 引用
Chinese Medical Journal 2024年 第11期137卷 1384-1386页
作者: Ting Wang Dansha Zhou Yuqin Chen Suhua Kuang Yue Xing Qijian Yi Zhengxia Pan Weibin Xu Jiao Rao Yunqi Liu Guoliang Lu Ziying Lin Xiang Li Yi Xie Yulong Wu Peng An Xiaoxiao Deng Jiayue He Jiayi Xie Chenxi Li Gang Geng Daiyin Tian Enmei Liu Jingsi Huang Zhou Fu Jian Wang Department of Respiratory Chongqing Higher Institution Engineering Research Center of Children’s Medical Big Data Intelligent ApplicationNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChildren’s Hospital of Chongqing Medical UniversityChongqing 400014China State Key Laboratory of Respiratory Diseases National Center for Respiratory MedicineGuangdong Key Laboratory of Vascular DiseasesNational Clinical Research Center for Respiratory DiseasesGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouGuangdong 510120China Department of Cardiac Surgery The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouGuangdong 510120China Department of Cardiovascular Medicine Children’s Hospital of Chongqing Medical University National Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChildren’s Hospital of Chongqing Medical UniversityChongqing 400014China Department of Thoracic and Cardiac Surgery Children’s Hospital of Chongqing Medical University National Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChildren’s Hospital of Chongqing Medical UniversityChongqing 400014China Department of Cardiac Center of Guangdong Women and Children Hospital Guangzhou GuangzhouGuangdong 511400China Department of Guangzhou Laboratory Guangzhou International Bio IslandGuangzhouGuangdong 510005China
To the Editor:Owing to the heterogeneity of congenital heart disease-associated pulmonary hypertension(CHDPH)disease and the development of the pulmonary vascular system in pediatric patients,the management of CHD-PH ... 详细信息
来源: 评论
Stepdown SLOPE for Controlled Feature Selection
arXiv
收藏 引用
arXiv 2023年
作者: Liang, Jingxuan Zhang, Xuelin Chen, Hong Li, Weifu Tang, Xin College of Science Huazhong Agricultural University Wuhan430070 China College of Informatics Huazhong Agricultural University Wuhan430070 China Ping An Property & Casualty Insurance Company Shenzhen China Engineering Research Center of Intelligent Technology for Agriculture Ministry of Education Wuhan430070 China Key Laboratory of Smart Farming for Agricultural Animals Wuhan430070 China Hubei Engineering Technology Research Center of Agricultural Big Data Wuhan430070 China
Sorted L-One Penalized Estimation (SLOPE) has shown the nice theoretical property as well as empirical behavior recently on the false discovery rate (FDR) control of high-dimensional feature selection by adaptively im... 详细信息
来源: 评论
Exploring A CAM - Based Approach for Weakly Supervised Fire Detection Task
Exploring A CAM - Based Approach for Weakly Supervised Fire ...
收藏 引用
IEEE International Conference on e-Business Engineering (ICEBE)
作者: Lvlong Lai Jian Chen Huichou Huang Qingyao Wu School of Software Engineering South China University of Technology Guangzhou China Key Laboratory of Big Data and Intelligent Robot Ministry of Education City University of Hong Kong Hong Kong China Pazhou Lab Guangzhou China
Most existing works in fire detection literature use available detectors like Faster RCNN, SSD, YOLO, etc. to localize the fire in images. These approaches work well but require object-level annotation for training, w... 详细信息
来源: 评论
Dual attention mechanism object tracking algorithm based on Fully-convolutional Siamese network
Dual attention mechanism object tracking algorithm based on ...
收藏 引用
International Conference on Networking and Network Applications (NaNA)
作者: Sugang Ma Zixian Zhang Lei Zhang Yanping Chen Xiaobao Yang Lei Pu Zhiqiang Hou School of Computer Science and Technology Xi’an University of Posts and Telecommunications Xi’an Shaanxi China School of Information Engineering Chang’an University Xi’an Shaanxi China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’an Key Laboratory of Big Data and Intelligent Computing Xi’an University of Posts and Telecommunications Xi’an Shaanxi China School of Information and Navigation Air Force Engineering University Xi’an Shaanxi China
In an effort to the problem of insufficient tracking performance of the Fully-convolutional Siamese network (SiamFC) in complex scenarios, a dual attention mechanism object tracking algorithm based on the Fully-convol... 详细信息
来源: 评论
Improving Incremental Learning: A Closer Look at the Softmax Function
SSRN
收藏 引用
SSRN 2024年
作者: Zhai, Zheng Zhang, Jiali Wang, Haiyu Wu, Mingxin Yang, Keshun Qiao, Xiaoyan Sun, Qiang Beijing Normal University No.18 Jinfeng Road Guangdong Zhuhai519087 China Shandong Technology and Business University Shandong Yantai China Yantai Key Laboratory of Big Data Modeling and Intelligent Computing Shandong China Immersion Technology and Evaluation Shandong Engineering Research Center Shandong China School of Mathematics Sichuan University Chengdu China College of Liberal Arts and Sciences University of Illinois Urbana-Champaign IL United States Department of Statistical Sciences University of Toronto ON Canada Department of Computer Science University of Toronto ON Canada Department of Statistics and Data Science MBZUAI Abu Dhabi United Arab Emirates
This paper investigates the limitations of the widely adopted softmax cross-entropy loss in incremental learning problems. Specifically, we highlight how the shift-invariant property of this loss function can lead to ... 详细信息
来源: 评论
Neural mechanisms of top-down divided and selective spatial attention in visual and auditory perception
收藏 引用
Brain Science Advances 2023年 第2期9卷 95-113页
作者: Zhongtian Guan Meng Lin Qiong Wu Jinglong Wu Kewei Chen Hongbin Han Dehua Chui Xu Zhang Chunlin Li School of Biomedical Engineering Capital Medical UniversityBeijing 100069China Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical UniversityBeijing 100069China Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application Capital Medical UniversityBeijing 100069China Peking University First Hospital Beijing 100034China Biomedical Engineering Laboratory Graduate School of Natural Science and TechnologyOkayama University3-1-1 Tsushima-nakaOkayamaJapan Key Laboratory of Biomimetic Robots and Systems Ministry of EducationBeijing Institute of TechnologyBeijing 100081China Computational Image Analysis Banner Alzheimer’s Institute and Banner Good Samaritan Medical CentrePET CentrePhoenixAZ 85006USA Radiology Peking University Third HospitalBeijing 100191China Neuroscience Research Institute/Peking University Third Hospital Beijing 100191China
Top-down attention mechanisms require the selection of specificobjects or locations;however,the brain mechanism involved when attention is allocated across different modalities is not well *** aim of this study was to... 详细信息
来源: 评论