咨询与建议

限定检索结果

文献类型

  • 1,035 篇 会议
  • 954 篇 期刊文献

馆藏范围

  • 1,989 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,270 篇 工学
    • 875 篇 计算机科学与技术...
    • 734 篇 软件工程
    • 310 篇 信息与通信工程
    • 182 篇 控制科学与工程
    • 173 篇 生物工程
    • 166 篇 电气工程
    • 103 篇 光学工程
    • 98 篇 电子科学与技术(可...
    • 90 篇 机械工程
    • 89 篇 生物医学工程(可授...
    • 77 篇 化学工程与技术
    • 58 篇 仪器科学与技术
    • 58 篇 交通运输工程
    • 51 篇 动力工程及工程热...
    • 49 篇 土木工程
    • 45 篇 网络空间安全
    • 44 篇 建筑学
    • 38 篇 安全科学与工程
  • 699 篇 理学
    • 377 篇 数学
    • 195 篇 生物学
    • 160 篇 物理学
    • 115 篇 统计学(可授理学、...
    • 92 篇 化学
    • 56 篇 系统科学
  • 357 篇 管理学
    • 214 篇 管理科学与工程(可...
    • 161 篇 图书情报与档案管...
    • 68 篇 工商管理
  • 100 篇 医学
    • 82 篇 临床医学
    • 61 篇 基础医学(可授医学...
  • 56 篇 法学
    • 42 篇 社会学
  • 42 篇 农学
  • 31 篇 经济学
  • 24 篇 教育学
  • 6 篇 文学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 70 篇 feature extracti...
  • 70 篇 training
  • 66 篇 semantics
  • 65 篇 deep learning
  • 45 篇 predictive model...
  • 44 篇 computational mo...
  • 38 篇 data models
  • 33 篇 convolution
  • 33 篇 accuracy
  • 31 篇 neural networks
  • 28 篇 contrastive lear...
  • 28 篇 machine learning
  • 27 篇 object detection
  • 25 篇 graph neural net...
  • 23 篇 convolutional ne...
  • 22 篇 conferences
  • 22 篇 data mining
  • 22 篇 forecasting
  • 21 篇 reinforcement le...
  • 21 篇 task analysis

机构

  • 69 篇 key laboratory o...
  • 55 篇 school of comput...
  • 52 篇 south china univ...
  • 46 篇 school of softwa...
  • 40 篇 school of electr...
  • 39 篇 jiangsu key labo...
  • 37 篇 jiangsu key labo...
  • 35 篇 hunan provincial...
  • 34 篇 chongqing key la...
  • 32 篇 college of big d...
  • 32 篇 key laboratory o...
  • 32 篇 key laboratory o...
  • 32 篇 national enginee...
  • 31 篇 key laboratory o...
  • 30 篇 peng cheng labor...
  • 30 篇 school of comput...
  • 30 篇 jiangsu key labo...
  • 26 篇 beijing key labo...
  • 25 篇 school of comput...
  • 24 篇 zhejiang univers...

作者

  • 38 篇 xu xiaolong
  • 36 篇 tan mingkui
  • 34 篇 wang guoyin
  • 26 篇 xiaolong xu
  • 23 篇 huang qingming
  • 21 篇 xu qianqian
  • 21 篇 hongyan ma
  • 20 篇 shen linlin
  • 16 篇 chen huajun
  • 16 篇 wu qingyao
  • 16 篇 miao qiguang
  • 16 篇 liu yiwen
  • 15 篇 yang zhiyong
  • 14 篇 xia shuyin
  • 13 篇 shang mingsheng
  • 13 篇 shutian liu
  • 13 篇 xianda hou
  • 13 篇 xue xingsi
  • 13 篇 changhong mi
  • 13 篇 hongyan zheng

语言

  • 1,859 篇 英文
  • 107 篇 其他
  • 35 篇 中文
  • 2 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=The Key Laboratory of Big Data and Intelligent Robots"
1989 条 记 录,以下是31-40 订阅
排序:
Few-Shot Object Detection Based On Label Constrained data Augmentation  9
Few-Shot Object Detection Based On Label Constrained Data Au...
收藏 引用
9th International Conference on big data and Information Analytics, bigDIA 2023
作者: Shi, Yan Wang, Guoyin Liu, Qun Chongqing University of Posts and Telecommunications Key Laboratory of Big Data Intelligent Computing Chongqing China
The majority of object detection methods typically depend on a significant quantity of annotated data, while few-shot object detection (FSOD) endeavors to identify novel classes of objects using a limited number of tr... 详细信息
来源: 评论
Swarm Intelligence Research:From Bio-inspired Single-population Swarm Intelligence to Human-machine Hybrid Swarm Intelligence
收藏 引用
Machine Intelligence Research 2023年 第1期20卷 121-144页
作者: Guo-Yin Wang Dong-Dong Cheng De-You Xia Hai-Huan Jiang Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and TelecommunicationsChongqing 400065China College of Big Data and Intelligent Engineering Yangtze Normal UniversityChongqing 408100China
Swarm intelligence has become a hot research field of artificial *** the importance of swarm intelli-gence for the future development of artificial intelligence,we discuss and analyze swarm intelligence from a broader... 详细信息
来源: 评论
Improved Self-Attention for Spodoptera Frugiperda Larval Instar Stages Identification  7
Improved Self-Attention for Spodoptera Frugiperda Larval Ins...
收藏 引用
7th International Conference on Pattern Recognition and Artificial Intelligence, PRAI 2024
作者: Wang, Mingyang Lu, Ying Xu, Quanyuan College of Big Data and Intelligent Engineering Southwest Forestry University Kunming China Big Data State Forestry Administration on Southwest Forestry University Key Laboratory of Forestry and Ecological Kunming China
Spodoptera frugiperda (fall armyworm, FAW) is a pest that poses a significant threat to global agriculture, with its larvae exhibiting unique morphological characteristics and varying degrees of harm at different inst... 详细信息
来源: 评论
ViGT: proposal-free video grounding with a learnable token in the transformer
收藏 引用
Science China(Information Sciences) 2023年 第10期66卷 196-212页
作者: Kun LI Dan GUO Meng WANG School of Computer Science and Information Engineering Hefei University of Technology Key Laboratory of Knowledge Engineering with Big Data Ministry of Education Intelligent Interconnected Systems Laboratory of Anhui Province Institute of Artificial Intelligence Hefei Comprehensive National Science Center
The video grounding(VG) task aims to locate the queried action or event in an untrimmed video based on rich linguistic descriptions. Existing proposal-free methods are trapped in the complex interaction between video ... 详细信息
来源: 评论
Transverse Velocity Field Measurement of Solar High-resolution Images Based on Unsupervised Deep Learning
收藏 引用
Research in Astronomy and Astrophysics 2025年 第3期25卷 236-248页
作者: Zhen-Hong Shang Long Chen Zhen-Ping Qiang Yi Bi Run-Xin Li Faculty of Information Engineering and Automation Kunming University of Science and Technology Yunnan Key Laboratory of Artificial Intelligence Kunming University of Science and Technology College of Big Data and Intelligent Engineering Southwest Forestry University Yunnan Observatories Chinese Academy of Sciences
Measuring the transverse velocity field in high-resolution solar images is essential for understanding solar *** paper introduces an innovative unsupervised deep learning optical flow model designed to calculate the t... 详细信息
来源: 评论
Dual-Branch Attention Transformer for Visual Commonsense Reasoning  6
Dual-Branch Attention Transformer for Visual Commonsense Rea...
收藏 引用
6th International Conference on Frontier Technologies of Information and Computer, ICFTIC 2024
作者: Ma, Xuerui Bai, Zongwen Zhou, Meili Gao, Yiqun School of Physics and Electronic Information Yan'an University Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data Yan'an China
Visual Commonsense Reasoning (VCR) is a challenging task that requires a model to select the correct answer in the context of a given image and question, while also providing a reasonable explanation to justify the ch... 详细信息
来源: 评论
LeapGNN: Accelerating Distributed GNN Training Leveraging Feature-Centric Model Migration  23
LeapGNN: Accelerating Distributed GNN Training Leveraging Fe...
收藏 引用
23rd USENIX Conference on File and Storage Technologies, FAST 2025
作者: Chen, Weijian He, Shuibing Qu, Haoyang Zhang, Xuechen The State Key Laboratory of Blockchain and Data Security Zhejiang University China Zhejiang Lab China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Washington State University Vancouver United States
Distributed training of graph neural networks (GNNs) has become a crucial technique for processing large graphs. Prevalent GNN frameworks are model-centric, necessitating the transfer of massive graph vertex features ... 详细信息
来源: 评论
keypoint-based Progressive Chain-of-Thought Distillation for LLMs  41
Keypoint-based Progressive Chain-of-Thought Distillation for...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Feng, Kaituo Li, Changsheng Zhang, Xiaolu Zhou, Jun Yuan, Ye Wang, Guoren Beijing Institute of Technology China Ant Group China Hebei Province Key Laboratory of Big Data Science and Intelligent Technology China
Chain-of-thought distillation is a powerful technique for transferring reasoning abilities from large language models (LLMs) to smaller student models. Previous methods typically require the student to mimic the step-... 详细信息
来源: 评论
SDGNN: Symmetry-Preserving Dual-Stream Graph Neural Networks
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第7期11卷 1717-1719页
作者: Jiufang Chen Ye Yuan Xin Luo the College of Computer Science and Technology Chongqing University of Posts and TelecommunicationsChongqing 400065 the Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing 400714China the College of Computer and Information Science Southwest UniversityChongqing 400715China IEEE
Dear Editor,This letter proposes a symmetry-preserving dual-stream graph neural network(SDGNN) for precise representation learning to an undirected weighted graph(UWG). Although existing graph neural networks(GNNs) ar... 详细信息
来源: 评论
Improving Cross-Domain Named Entity Recognition from the Perspective of Representation  28th
Improving Cross-Domain Named Entity Recognition from the P...
收藏 引用
28th International Conference on database Systems for Advanced Applications, DASFAA 2023
作者: Xu, Jingyun Cai, Yi School of Software Engineering South China University of Technology Guangzhou510650 China The Key Laboratory of Big Data and Intelligent Robots South China University of Technology and the Pazhou Lab Guangzhou510335 China
Recently, cross-domain named entity recognition (cross-domain NER), which can reduce the high data annotation costs faced by fully-supervised methods, has drawn attention. Most competitive approaches mainly rely on pr... 详细信息
来源: 评论