咨询与建议

限定检索结果

文献类型

  • 1,394 篇 会议
  • 1,043 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 2,439 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,528 篇 工学
    • 1,073 篇 计算机科学与技术...
    • 909 篇 软件工程
    • 344 篇 信息与通信工程
    • 172 篇 电气工程
    • 172 篇 控制科学与工程
    • 146 篇 电子科学与技术(可...
    • 144 篇 生物工程
    • 123 篇 机械工程
    • 103 篇 光学工程
    • 81 篇 生物医学工程(可授...
    • 79 篇 化学工程与技术
    • 56 篇 仪器科学与技术
    • 54 篇 动力工程及工程热...
    • 42 篇 材料科学与工程(可...
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 35 篇 网络空间安全
    • 30 篇 交通运输工程
  • 938 篇 理学
    • 596 篇 数学
    • 243 篇 物理学
    • 174 篇 生物学
    • 160 篇 统计学(可授理学、...
    • 84 篇 化学
    • 74 篇 系统科学
  • 428 篇 管理学
    • 235 篇 图书情报与档案管...
    • 206 篇 管理科学与工程(可...
    • 74 篇 工商管理
  • 70 篇 医学
    • 55 篇 临床医学
    • 44 篇 基础医学(可授医学...
  • 46 篇 法学
    • 35 篇 社会学
  • 37 篇 农学
  • 23 篇 经济学
  • 15 篇 教育学
  • 9 篇 哲学
  • 7 篇 艺术学
  • 4 篇 军事学
  • 3 篇 文学

主题

  • 108 篇 feature extracti...
  • 95 篇 semantics
  • 67 篇 information proc...
  • 62 篇 training
  • 59 篇 laboratories
  • 51 篇 computers
  • 43 篇 face recognition
  • 43 篇 computational mo...
  • 42 篇 image segmentati...
  • 42 篇 visualization
  • 40 篇 data mining
  • 38 篇 optimization
  • 37 篇 machine learning
  • 36 篇 humans
  • 35 篇 accuracy
  • 33 篇 deep learning
  • 33 篇 robustness
  • 30 篇 support vector m...
  • 29 篇 predictive model...
  • 29 篇 decoding

机构

  • 436 篇 key laboratory o...
  • 212 篇 university of ch...
  • 83 篇 key laboratory o...
  • 83 篇 key laboratory o...
  • 63 篇 peng cheng labor...
  • 63 篇 college of compu...
  • 52 篇 college of mathe...
  • 48 篇 key laboratory o...
  • 45 篇 hunan provincial...
  • 45 篇 the key laborato...
  • 43 篇 key laboratory o...
  • 43 篇 college of infor...
  • 43 篇 graduate univers...
  • 42 篇 school of comput...
  • 40 篇 chinese academy ...
  • 38 篇 fujian provincia...
  • 37 篇 fujian key labor...
  • 35 篇 key laboratory o...
  • 32 篇 school of comput...
  • 31 篇 anhui university...

作者

  • 95 篇 zhongzhi shi
  • 93 篇 shi zhongzhi
  • 74 篇 xilin chen
  • 71 篇 shiguang shan
  • 62 篇 liu qun
  • 61 篇 huang qingming
  • 49 篇 li yingsong
  • 41 篇 huang zhixiang
  • 41 篇 xu qianqian
  • 40 篇 feng yang
  • 37 篇 he qing
  • 35 篇 yingsong li
  • 32 篇 wen gao
  • 31 篇 qing he
  • 29 篇 jiang kai
  • 29 篇 zhixiang huang
  • 28 篇 li hua
  • 28 篇 zhuang fuzhen
  • 27 篇 guo wenzhong
  • 26 篇 yang zhiyong

语言

  • 2,303 篇 英文
  • 85 篇 其他
  • 57 篇 中文
检索条件"机构=The Key Laboratory of Cognitive Computing and Intelligent Information Processing"
2439 条 记 录,以下是2401-2410 订阅
排序:
Bilingual Word Embedding with Sentence Combination CNN for 1-to-N Sentence Alignment  20
Bilingual Word Embedding with Sentence Combination CNN for 1...
收藏 引用
Proceedings of the 4th International Conference on Natural Language processing and information Retrieval
作者: Xinyuan Ren Xiangling Fu Xuesi Zhou Chunsheng Liu Songfeng Gao Lei Peng School of Software Engineering Beijing University of Posts and Telecommunications Beijing China and Key Laboratory of Trustworthy Distributed Computing and Service Ministry of Education Beijing University of Posts and Telecommunications Beijing China Department of Electronic Engineering Tsinghua University Hai Dian Beijing China and Multimedia Signal and Intelligent Information Processing Lab Tsinghua University Hai Dian Beijing China BUPT and Huarong Joint lab of Smart Finance Beijing P. R. China and HuaRong RongTong (Beijing) Technology Co. Ltd Beijing P. R. China
Sentence alignment, as one of the most active and fundamental tasks in the field of natural language processing (NLP), is usually realized in two categories of methods. One is traditional methods which are firstly pro... 详细信息
来源: 评论
An improved Gaussian Mixture Model algorithm for background representation
收藏 引用
Journal of Physics: Conference Series 2019年 第1期1325卷
作者: Ping Wang Shaoxiong Dong School of Electrical Engineering and Electronic Information Xihua University Chengdu Sichuan 610039 China Artificial Intelligence Key Laboratory of Sichuan Province Sichuan University of Science and Engineering Zigong Sichuan 643000 China Science Computing Intelligent Information Processing of GuangXi higher education key laboratory Guangxi Teachers Education University Nanning 530023 China
Initializing a background frame for Gaussian Mixture Model requires no moving objects in the background scene. In this paper, in order to obtain an initial frame when there is a moving object in the background scene, ...
来源: 评论
DQPS: An intelligent Multi-Hop Computation Offloading Scheme for Workflow Applications in Vehicular Edge computing Networks
收藏 引用
IEEE Transactions on Consumer Electronics 2024年
作者: Lin, Bing Chen, Qiaoxin Chen, Xing Jia, Wen-Kang Lu, Yu Xiong, Neal N. Fujian Normal University College of Physics and Energy Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials Fuzhou350117 China Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering Fuzhou350117 China Peking University School of Computer Science 100871 China Xiamen University Department of Informatics and Communication Engineering Xiamen361005 China Fuzhou University College of Computer and Data Science Fuzhou350118 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou350118 China Fujian Normal University College of Photonic and Electronic Engineering Fuzhou350117 China Fujian Normal University Concord University College Fuzhou350117 China Sul Ross State University Department of Computer Mathematical and Physical Sciences AlpineTX79830 United States
Vehicular Edge computing (VEC) is a feasible solution for autonomous driving as it can offload latency-sensitive and computation-intensive tasks from vehicle terminals to roadside units (RSUs) for real-time processing... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Optimizing Two-way Partial AUC with an End-to-end Framework
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Zhiyong Xu, Qianqian Bao, Shilong He, Yuan Cao, Xiaochun Huang, Qingming School of Computer Science and Technology University of Chinese Academy of Sciences Beijing100049 China The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Institute of Information Engineering Chinese Academy of Sciences Beijing100093 China School of Cyber Security University of Chinese Academy of Sciences Beijing100049 China The Security Department of Alibaba Group Hangzhou311121 China School of Cyber Science and Technology Shenzhen Campus Sun Yat-sen University Shenzhen518107 China The School of Computer Science and Technology University of Chinese Academy of Sciences Beijing101408 China University of Chinese Academy of Sciences Beijing101408 China Peng Cheng Laboratory Shenzhen518055 China
The Area Under the ROC Curve (AUC) is a crucial metric for machine learning, which evaluates the average performance over all possible True Positive Rates (TPRs) and False Positive Rates (FPRs). Based on the knowledge... 详细信息
来源: 评论
Nitrogen vertical distribution by canopy reflectance spectrum in winter wheat
收藏 引用
IOP Conference Series: Earth and Environmental Science 2014年 第1期17卷
作者: W J Huang Q Y Yang D L Peng L S Huang D Y Zhang G J Yang Key Laboratory of Digital Earth Science Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences Beijing 100094 China Key Laboratory of Intelligent Computing & Signal Processing Ministry of Education Anhui University Hefei 230039 Anhui China Beijing Agriculture Information Technology Research Center Beijing 100097 China
Nitrogen is a key factor for plant photosynthesis, ecosystem productivity and leaf respiration. Under the condition of nitrogen deficiency, the crop shows the nitrogen deficiency symptoms in the bottom leaves, while e...
来源: 评论
TSW-FD: A Novel Temporal and Spatial Domain Weight Analysis of Feature Difference for Micro-Expression Spotting
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1828卷
作者: Zhihao Zhang Fan Mo Ke Zhao Tong Chen Xiaolan Fu State Key Laboratory of Brain and Cognitive Science Institute of Psychology Chinese Academy of Sciences Beijing 100101 China Department of Psychology University of Chinese Academy of Sciences Beijing 100049 China Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing Southwest University Chongqing 400715 China Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology Chongqing 400715 China
The micro-expression spotting has recently attracted increasing attention from psychology and computer vision community, since embraced in the second facial Micro-Expression Grand Challenge (MEGC 2019). Different from...
来源: 评论
Drug3D-DTI: Improved Drug-target Interaction Prediction by Incorporating Spatial information of Small Molecules
Drug3D-DTI: Improved Drug-target Interaction Prediction by I...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Zhirui Liao Xiaodi Huang Hiroshi Mamitsuka Shanfeng Zhu School of Computer Science Fudan University Shanghai China Institute of Artificial Intelligence Biomedicine Nanjing University Nanjing China School of Computing Mathematics and Engineering Charles Sturt University Albury NSW Australia Bioinformatics Center Institute for Chemical Research Kyoto University Uji Kyoto Japan Institute of Science and Technology for Brain-Inspired Intelligence Fudan University Shanghai China Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) Ministry of Education China MOE Frontiers Center for Brain Science Fudan University Shanghai China Zhangjiang Fudan International Innovation Center Shanghai China Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai China
A number of machine learning (ML) approaches for drug discovery have been available that rely only on sequential (1D) and planar (2D) information without effectively using the 3D information for generating features of... 详细信息
来源: 评论
Kinetic-molecular theory optimization algorithm based on Kent chaotic mapping
收藏 引用
AIP Conference Proceedings 2017年 第1期1864卷
作者: Huguang Gong Chaodong Fan Bo Ouyang 1Key Laboratory for Intelligent Computing & Information Processing of the Ministry of Education (Xiangtan University) Xiangtan Hunan 411105 China 2Hunan 2011 Collaborative Innovation Center of the Change of Wind Power and Electrical Energy Xiangtan Hunan 411105 China
Aiming at the shortage that Kinetic-molecular theory optimization algorithm (KMTOA) is more likely to show premature convergence and the accuracy of searching for the optimum needs to be improved, a Kinetic-molecular ...
来源: 评论
Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization
收藏 引用
Computational biology and chemistry 2015年 57卷 21-8页
作者: Zhi-Qin Zhao Guo-Sheng Han Zu-Guo Yu Jinyan Li Hunan Key Laboratory for Computation and Simulation in Science and Engineering and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan University Xiangtan Hunan 411105 China. Hunan Key Laboratory for Computation and Simulation in Science and Engineering and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan University Xiangtan Hunan 411105 China School of Mathematical Sciences Queensland University of Technology GPO Box 2434 Brisbane Q4001 Australia. Electronic address: yuzg1970@***. Advanced Analytics Institute & Centre for Health Technologies University of Technology Sydney Broadway NSW 2007 Australia. Electronic address: jinyan.li@uts.edu.au.
Random walk on heterogeneous networks is a recently emerging approach to effective disease gene prioritization. Laplacian normalization is a technique capable of normalizing the weight of edges in a network. We use th... 详细信息
来源: 评论