咨询与建议

限定检索结果

文献类型

  • 3,544 篇 会议
  • 2,460 篇 期刊文献
  • 14 册 图书

馆藏范围

  • 6,018 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,105 篇 工学
    • 3,150 篇 计算机科学与技术...
    • 2,624 篇 软件工程
    • 744 篇 信息与通信工程
    • 470 篇 控制科学与工程
    • 364 篇 生物工程
    • 303 篇 电气工程
    • 291 篇 机械工程
    • 253 篇 电子科学与技术(可...
    • 208 篇 光学工程
    • 199 篇 生物医学工程(可授...
    • 147 篇 仪器科学与技术
    • 140 篇 化学工程与技术
    • 118 篇 网络空间安全
    • 117 篇 动力工程及工程热...
    • 94 篇 交通运输工程
    • 92 篇 安全科学与工程
    • 91 篇 建筑学
    • 90 篇 材料科学与工程(可...
  • 1,850 篇 理学
    • 1,170 篇 数学
    • 398 篇 生物学
    • 326 篇 统计学(可授理学、...
    • 318 篇 物理学
    • 214 篇 系统科学
    • 147 篇 化学
  • 1,203 篇 管理学
    • 717 篇 管理科学与工程(可...
    • 545 篇 图书情报与档案管...
    • 229 篇 工商管理
  • 129 篇 医学
    • 107 篇 临床医学
    • 91 篇 基础医学(可授医学...
  • 128 篇 法学
    • 97 篇 社会学
  • 73 篇 经济学
  • 66 篇 教育学
  • 45 篇 农学
  • 21 篇 艺术学
  • 15 篇 文学
  • 12 篇 军事学
  • 5 篇 哲学

主题

  • 176 篇 semantics
  • 160 篇 computer science
  • 129 篇 software enginee...
  • 129 篇 feature extracti...
  • 125 篇 laboratories
  • 117 篇 training
  • 111 篇 computational mo...
  • 99 篇 software
  • 98 篇 web services
  • 97 篇 data mining
  • 92 篇 educational inst...
  • 87 篇 deep learning
  • 87 篇 algorithm design...
  • 80 篇 accuracy
  • 78 篇 optimization
  • 78 篇 cloud computing
  • 72 篇 clustering algor...
  • 67 篇 data models
  • 62 篇 software testing
  • 61 篇 wireless sensor ...

机构

  • 451 篇 state key labora...
  • 283 篇 state key labora...
  • 204 篇 school of comput...
  • 177 篇 state key labora...
  • 160 篇 college of compu...
  • 155 篇 state key labora...
  • 144 篇 school of inform...
  • 131 篇 school of electr...
  • 121 篇 key laboratory o...
  • 112 篇 national key lab...
  • 111 篇 shanghai key lab...
  • 109 篇 state key labora...
  • 102 篇 school of comput...
  • 102 篇 school of comput...
  • 90 篇 university of ch...
  • 90 篇 shandong provinc...
  • 79 篇 state key labora...
  • 72 篇 shandong provinc...
  • 66 篇 school of comput...
  • 63 篇 department of co...

作者

  • 73 篇 junping du
  • 52 篇 shen linlin
  • 47 篇 tao dacheng
  • 47 篇 du bo
  • 43 篇 xiao limin
  • 41 篇 huang di
  • 40 篇 gao yang
  • 39 篇 shi yinghuan
  • 35 篇 chen zhong
  • 35 篇 yu huiqun
  • 33 篇 liu hong
  • 32 篇 fan guisheng
  • 32 篇 ruan li
  • 31 篇 miao huaikou
  • 31 篇 limin xiao
  • 30 篇 baowen xu
  • 30 篇 zhao jian
  • 29 篇 hong mei
  • 28 篇 shen furao
  • 27 篇 xu baowen

语言

  • 5,650 篇 英文
  • 216 篇 其他
  • 157 篇 中文
检索条件"机构=The Key Laboratory of Computer Software Engineering"
6018 条 记 录,以下是221-230 订阅
排序:
Rethinking the Bias of Foundation Model under Long-tailed Distribution
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Jiahao Qin, Bin Li, Jiangmeng Chen, Hao Su, Bing Gaoling School of Artificial Intelligence Renmin University of China China Beijing Key Laboratory of Big Data Management and Analysis Methods China Institute of Software Chinese Academy of Sciences China University of Chinese Academy of Sciences China Electrical and Computer Engineering Carnegie Mellon University United States
Long-tailed learning has garnered increasing attention due to its practical significance. Among the various approaches, the fine-tuning paradigm has gained considerable interest with the advent of foundation models. H... 详细信息
来源: 评论
Corporate Fraud Detection in Rich-yet-Noisy Financial Graph
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Shiqi Zhang, Zhibo Fang, Libing Nguyen, Cam-Tu Li, Wenzhon School of Artificial Intelligence Nanjing University Jiangsu Nanjing China School of Computer Science and Technology Nanjing University Jiangsu Nanjing China School of Management and Engineering Nanjing University Jiangsu Nanjing China State Key Laboratory for Novel Software Technology Nanjing University Jiangsu Nanjing China
Corporate fraud detection aims to automatically recognize companies that conduct wrongful activities such as fraudulent financial statements or illegal insider trading. Previous learning-based methods fail to effectiv... 详细信息
来源: 评论
FaceBench: A Multi-View Multi-Level Facial Attribute VQA Dataset for Benchmarking Face Perception MLLMs
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Xiaoqin Ma, Xusen Hou, Xianxu Ding, Meidan Li, Yudong Chen, Junliang Chen, Wenting Peng, Xiaoyang Shen, Linlin Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China AIAC Xi’an Jiaotong-Liverpool University China Tsinghua University China The Hong Kong Polytechnic University Hong Kong City University of Hong Kong Hong Kong Sun Yat-sen University China
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in various tasks. However, effectively evaluating these MLLMs on face perception remains largely unexplored. To address this gap, we i...
来源: 评论
Semi-supervised software Defect Prediction Using Task-Driven Dictionary Learning
收藏 引用
Chinese Journal of Electronics 2016年 第6期25卷 1089-1096页
作者: CHENG Ming WU Guoqing YUAN Mengting WAN Hongyan School of Computer Wuhan University State Key Laboratory of Software Engineering Wuhan University
We present a semi-supervised approach for software defect prediction. The proposed method is designed to address the special problematic characteristics of software defect datasets, namely, lack of labeled samples and... 详细信息
来源: 评论
OpenLS-DGF: An Adaptive Open-Source Dataset Generation Framework for Machine Learning Tasks in Logic Synthesis
收藏 引用
IEEE Transactions on computer-Aided Design of Integrated Circuits and Systems 2025年
作者: Ni, Liwei Wang, Rui Liu, Miao Meng, Xingyu Lin, Xiaoze Liu, Junfeng Luo, Guojie Chu, Zhufei Qian, Weikang Yang, Xiaoyan Xie, Biwei Li, Xingquan Li, Huawei Chinese Academy of Sciences State Key Lab of Processors Institute of Computing Technology Beijing100190 China Pengcheng Laboratory Shenzhen518055 China University of Chinese Academy of Sciences Beijing101408 China Shenzhen University College of Computer Science and Software Engineering Shenzhen518060 China University of Chinese Academy of Sciences School of Computer Science and Technology Beijing100049 China Peking University School of Computer Science Center for Energy-Efficient Computing and Applications Beijing100871 China Ninbo University Faculty of Electrical Engineering and Computer Science Ninbo315211 China Shanghai Jiao Tong University University of Michigan-Shanghai Jiao Tong University Joint Institute MoE Key Laboratory of Artificial Intelligence Shanghai200240 China Hangzhou Dianzi University School of Electronics and Information Engineering Hangzhou311121 China
This paper introduces OpenLS-DGF, an adaptive logic synthesis dataset generation framework, to enhance machine learning (ML) applications within the logic synthesis process. Previous dataset generation flows were tail... 详细信息
来源: 评论
A Robust key Exchange and Tamper-Resistant Protocol for HAN and NAN Networks in Smart Grids
收藏 引用
IEEE Internet of Things Journal 2025年
作者: Ayub, Muhammad Faizan Li, Xiong Mahmood, Khalid Shamshad, Salman Das, Ashok Kumar Wang, Guijuan University of Electronic Science and Technology of China School of Computer Science and Engineering Sichuan Chengdu611731 China National Yunlin University of Science and Technology Graduate School of Intelligent Data Science Yunlin Douliu64002 Taiwan The University of Lahore Department of Software Engineering Lahore54590 Pakistan International Institute of Information Technology Center for Security Theory and Algorithmic Research Hyderabad500 032 India Korea University College of Informatics Department of Computer Science and Engineering Anam-ro Seoul145 Korea Republic of Qilu University of Technology Shandong Academy of Sciences Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Jinan250353 China Shandong Fundamental Research Center for Computer Science Shandong Provincial Key Laboratory of Industrial Network and Information System Security Jinan250353 China
Smart Grids (SG) rely on Home Area Networks (HAN) and Neighborhood Area Networks (NAN) to ensure efficient power distribution, real-time monitoring, and seamless communication between smart devices. Despite these adva... 详细信息
来源: 评论
A Survey of Adversarial Examples in computer Vision:Attack,Defense,and Beyond
收藏 引用
Wuhan University Journal of Natural Sciences 2025年 第1期30卷 1-20页
作者: XU keyizhi LU Yajuan WANG Zhongyuan LIANG Chao School of Computer Science Wuhan UniversityWuhan 430072HubeiChina National Engineering Research Center for Multimedia Software(NERCMS) Wuhan UniversityWuhan 430072HubeiChina Key Laboratory of Multimedia and Network Communication Engineering Hubei ProvinceWuhan UniversityWuhan 430072HubeiChina School of Cyber Science and Engineering Wuhan UniversityWuhan 430072HubeiChina
Recent years have witnessed the ever-increasing performance of Deep Neural Networks(DNNs)in computer vision ***,researchers have identified a potential vulnerability:carefully crafted adversarial examples can easily m... 详细信息
来源: 评论
STAR-RIS and UAV Combination in MEC Networks: Simultaneous Task Offloading and Communications
收藏 引用
IEEE Transactions on Communications 2025年
作者: Xiao, Han Hu, Xiaoyan Wang, Wenjie Su, Zhou Wong, Kai-Kit Yang, Kun Xi'an Jiaotong University School of Information and Communications Engineering Xi'an710049 China Southeast University National Mobile Communications Research Laboratory Nanjing210096 China Xi'an Jiaotong University School of Cyber Science and Engineering Xi'an710049 China University College London Department of Electronic and Electrical Engineering Torrington Place LondonWC1E 7JE United Kingdom Yonsei University Yonsei Frontier Lab Seoul Korea Republic of Nanjing University State Key Laboratory of Novel Software Technology Nanjing210008 China School of Intelligent Software and Engineering Suzhou215163 China University of Essex School of Computer Science and Electronic Engineering Essex United Kingdom
This paper explores a simultaneous tasks offloading and communications (STOC) scheme in mobile edge computing (MEC) networks, supported by the combination of simultaneously transmitting and reflecting reconfigurable i... 详细信息
来源: 评论
Model-Based Offline Reinforcement Learning with Adversarial Data Augmentation
arXiv
收藏 引用
arXiv 2025年
作者: Cao, Hongye Feng, Fan Huo, Jing Yang, Shangdong Fang, Meng Yang, Tianpei Gao, Yang National Key Laboratory for Novel Software Technology Nanjing University Nanjing210093 China Department of Electrical Engineering City University of Hong Kong Hong Kong School of Computer Science Nanjing University of Posts and Telecommunications Nanjing210023 China Department of Computer Science University of Liverpool LiverpoolL69 3BX United Kingdom
Model-based offline Reinforcement Learning (RL) constructs environment models from offline datasets to perform conservative policy optimization. Existing approaches focus on learning state transitions through ensemble... 详细信息
来源: 评论
Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Geng Ma, Weilong Li, Jiahui Sun, Zemin Wang, Jiacheng Niyato, Dusit Mao, Shiwen College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore College of Software Jilin University Changchun130012 China Department of Electrical and Computer Engineering Auburn University AuburnAL36849-5201 United States
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring. In the upcoming six-generation... 详细信息
来源: 评论