咨询与建议

限定检索结果

文献类型

  • 942 篇 期刊文献
  • 691 篇 会议
  • 1 册 图书

馆藏范围

  • 1,634 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,127 篇 工学
    • 812 篇 计算机科学与技术...
    • 665 篇 软件工程
    • 301 篇 信息与通信工程
    • 199 篇 电气工程
    • 156 篇 生物工程
    • 143 篇 控制科学与工程
    • 110 篇 生物医学工程(可授...
    • 102 篇 光学工程
    • 101 篇 电子科学与技术(可...
    • 61 篇 机械工程
    • 50 篇 化学工程与技术
    • 46 篇 交通运输工程
    • 45 篇 仪器科学与技术
    • 37 篇 网络空间安全
    • 33 篇 建筑学
    • 31 篇 土木工程
    • 31 篇 航空宇航科学与技...
  • 594 篇 理学
    • 323 篇 数学
    • 174 篇 生物学
    • 122 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 56 篇 化学
    • 46 篇 系统科学
  • 312 篇 管理学
    • 180 篇 管理科学与工程(可...
    • 144 篇 图书情报与档案管...
    • 74 篇 工商管理
  • 101 篇 医学
    • 92 篇 临床医学
    • 79 篇 基础医学(可授医学...
    • 56 篇 药学(可授医学、理...
  • 42 篇 法学
    • 34 篇 社会学
  • 24 篇 经济学
  • 19 篇 农学
  • 13 篇 教育学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 80 篇 semantics
  • 63 篇 feature extracti...
  • 48 篇 deep learning
  • 45 篇 training
  • 32 篇 computational mo...
  • 32 篇 data models
  • 30 篇 accuracy
  • 29 篇 federated learni...
  • 28 篇 convolution
  • 25 篇 predictive model...
  • 25 篇 machine learning
  • 23 篇 data mining
  • 23 篇 contrastive lear...
  • 22 篇 deep neural netw...
  • 21 篇 image segmentati...
  • 20 篇 neural networks
  • 19 篇 graph neural net...
  • 19 篇 visualization
  • 18 篇 robustness
  • 17 篇 codes

机构

  • 54 篇 shandong provinc...
  • 51 篇 college of compu...
  • 51 篇 national enginee...
  • 46 篇 shandong enginee...
  • 44 篇 key laboratory o...
  • 40 篇 school of cyber ...
  • 39 篇 beijing advanced...
  • 37 篇 school of comput...
  • 37 篇 college of compu...
  • 35 篇 nanyang technolo...
  • 35 篇 university of ch...
  • 29 篇 school of big da...
  • 29 篇 national enginee...
  • 28 篇 college of compu...
  • 28 篇 hubei key labora...
  • 27 篇 peng cheng labor...
  • 27 篇 hubei engineerin...
  • 26 篇 services computi...
  • 25 篇 cluster and grid...
  • 25 篇 school of comput...

作者

  • 73 篇 niyato dusit
  • 32 篇 jin hai
  • 24 篇 sun geng
  • 23 篇 shen linlin
  • 21 篇 hai jin
  • 20 篇 hu shengshan
  • 19 篇 wang jiacheng
  • 17 篇 huang qingming
  • 16 篇 liu ya-feng
  • 16 篇 xu qianqian
  • 15 篇 zhang leo yu
  • 15 篇 li jiahui
  • 15 篇 liu bin
  • 14 篇 huang sheng
  • 14 篇 zhou ziqi
  • 13 篇 cao xiaochun
  • 13 篇 li minghui
  • 12 篇 wang jinbao
  • 12 篇 yang yang
  • 12 篇 li tianrui

语言

  • 1,409 篇 英文
  • 203 篇 其他
  • 35 篇 中文
检索条件"机构=The Key Laboratory of Data Engineering and Visual Computing"
1634 条 记 录,以下是1131-1140 订阅
排序:
Deep knn for medical image classification  23rd
Deep knn for medical image classification
收藏 引用
23rd International Conference on Medical Image computing and Computer-Assisted Intervention, MICCAI 2020
作者: Zhuang, Jiaxin Cai, Jiabin Wang, Ruixuan Zhang, Jianguo Zheng, Wei-Shi School of Data and Computer Science Sun Yat-sen University Guangzhou China Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen China Key Laboratory of Machine Intelligence and Advanced Computing MOE Guangzhou China Pazhou Lab Guangzhou China
Human-level diagnostic performance from intelligent systems often depends on large set of training data. However, the amount of available data for model training may be limited for part of diseases, which would cause ... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language Processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Progressive Dual Priori Network for Generalized Breast Tumor Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Li Wang, Lihui Kuai, Zixiang Tang, Lei Ou, Yingfeng Ye, Chen Zhu, Yuemin Wu, Min Shi, Tianliang Engineering Research Center of Text Computing & Cognitive Intelligence Ministry of Education Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province State Key Laboratory of Public Big Data College of Computer Science and Technology Guizhou University Guiyang550025 China Imaging Center Harbin Medical University Cancer Hospital Harbin150081 China Radiology Department Guizhou Provincial People’s Hospital Guiyang550002 China Radiology Department Tongren People’s Hospital Tongren554300 China Univ Lyon INSA Lyon CNRS Inserm CREATIS UMR 5220 U1206 LyonF-69621 France
To promote the generalization ability of breast tumor segmentation models, as well as to improve the segmentation performance for breast tumors with smaller size, low-contrast and irregular shape, we propose a progres... 详细信息
来源: 评论
MVSS-Net: Multi-View Multi-Scale Supervised Networks for Image Manipulation Detection
arXiv
收藏 引用
arXiv 2021年
作者: Dong, Chengbo Chen, Xinru Hu, Ruohan Cao, Juan Li, Xirong The Key Lab of Data Engineering and Kowledge Engineering Renmin University of China Beijing100872 China The AIMC Lab. School of Information Renmin University of China Beijing100872 China Institute of Computing Technology Chinese Academy of Sciences The the Key Laboratory of Media Convergence Production Technology and Systems Beijing100864 China
As manipulating images by copy-move, splicing and/or inpainting may lead to misinterpretation of the visual content, detecting these sorts of manipulations is crucial for media forensics. Given the variety of possible... 详细信息
来源: 评论
Unsupervised hashing with contrastive information bottleneck
arXiv
收藏 引用
arXiv 2021年
作者: Qiu, Zexuan Su, Qinliang Ou, Zijing Yu, Jianxing Chen, Changyou School of Computer Science and Engineering Sun Yat-sen University Guangzhou China School of Artificial Intelligence Sun Yat-sen University Guangdong China CSE Department SUNY at Buffalo Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
Many unsupervised hashing methods are implicitly established on the idea of reconstructing the input data, which basically encourages the hashing codes to retain as much information of original data as possible. Howev... 详细信息
来源: 评论
Two-Stage Attention-Based Model for Code Search with Textual and Structural Features
Two-Stage Attention-Based Model for Code Search with Textual...
收藏 引用
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)
作者: Ling Xu Huanhuan Yang Chao Liu Jianhang Shuai Meng Yan Yan Lei Zhou Xu Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University) Ministry of Education China School of Big Data and Software Engineering Chongqing University Chongqing China College of Computer Science and Technology Zhejiang University Hangzhou China
Searching and reusing existing code from a large scale codebase can largely improve developers' programming efficiency. To support code reuse, early code search models leverage information retrieval (IR) technique... 详细信息
来源: 评论
An Asymmetric Modeling for Action Assessment  1
收藏 引用
16th European Conference on Computer Vision, ECCV 2020
作者: Gao, Jibin Zheng, Wei-Shi Pan, Jia-Hui Gao, Chengying Wang, Yaowei Zeng, Wei Lai, Jianhuang School of Data and Computer Science Sun Yat-sen University Guangzhou China Peng Cheng Laboratory Shenzhen518005 China School of Electronics Engineering and Computer Science Peking University Beijing China Pazhou Lab Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Guangzhou China
Action assessment is a task of assessing the performance of an action. It is widely applicable to many real-world scenarios such as medical treatment and sporting events. However, existing methods for action assessmen... 详细信息
来源: 评论
Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
arXiv
收藏 引用
arXiv 2025年
作者: Huang, Yuhao Chang, Ao Dou, Haoran Tao, Xing Zhou, Xinrui Cao, Yan Huang, Ruobing Frangi, Alejandro F. Bao, Lingyun Yang, Xin Ni, Dong National-Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Shenzhen University Medical School Shenzhen University Shenzhen China Lab Shenzhen University Shenzhen China Marshall Laboratory of Biomedical Engineering Shenzhen University Shenzhen China School of Computing University of Leeds Leeds United Kingdom Shenzhen RayShape Medical Technology Co. Ltd Shenzhen China Division of Informatics Imaging and Data Science School of Health Sciences University of Manchester Manchester United Kingdom Department of Computer Science School of Engineering University of Manchester Manchester United Kingdom Department of Electrical Engineering Department of Cardiovascular Sciences KU Leuven Belgium Alan Turing Institute London United Kingdom NIHR Manchester Biomedical Research Centre Manchester Academic Health Science Centre Manchester United Kingdom Department of Ultrasound Affiliated Hangzhou First People’s Hospital School of Medicine Westlake University China School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nod... 详细信息
来源: 评论
USEV: Universal Speaker Extraction with visual Cue
arXiv
收藏 引用
arXiv 2021年
作者: Pan, Zexu Ge, Meng Li, Haizhou The Integrative Sciences and Engineering Programme The Institute of Data Science The Department of Electrical and Computer Engineering National University of Singapore 119077 Singapore The Department of Electrical and Computer Engineering National University of Singapore 119077 Singapore The Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin300072 China The School of Data Science The Chinese University of Hong Kong Shenzhen518172 China The University of Bremen 28359 Germany Kriston AI Xiamen China
A speaker extraction algorithm seeks to extract the target speaker's speech from a multi-talker speech mixture. The prior studies focus mostly on speaker extraction from a highly overlapped multi-talker speech mix... 详细信息
来源: 评论
OPR-Miner: Order-preserving rule mining for time series
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Youxi Zhao, Xiaoqian Li, Yan Guo, Lei Zhu, Xingquan Fournier-Viger, Philippe Wu, Xindong School of Artificial Intelligence Hebei University of Technology Tianjin300401 China Hebei Key Laboratory of Big Data Computing Tianjin300401 China School of Economics and Management Hebei University of Technology Tianjin300401 China State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin300401 China The Department of Computer & Electrical Engineering and Computer Science Florida Atlantic University FL33431 United States Shenzhen University Shenzhen China Hefei University of Technology Hefei230009 China
Discovering frequent trends in time series is a critical task in data mining. Recently, order-preserving matching was proposed to find all occurrences of a pattern in a time series, where the pattern is a relative ord... 详细信息
来源: 评论