咨询与建议

限定检索结果

文献类型

  • 942 篇 期刊文献
  • 691 篇 会议
  • 1 册 图书

馆藏范围

  • 1,634 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,127 篇 工学
    • 812 篇 计算机科学与技术...
    • 665 篇 软件工程
    • 301 篇 信息与通信工程
    • 199 篇 电气工程
    • 156 篇 生物工程
    • 143 篇 控制科学与工程
    • 110 篇 生物医学工程(可授...
    • 102 篇 光学工程
    • 101 篇 电子科学与技术(可...
    • 61 篇 机械工程
    • 50 篇 化学工程与技术
    • 46 篇 交通运输工程
    • 45 篇 仪器科学与技术
    • 37 篇 网络空间安全
    • 33 篇 建筑学
    • 31 篇 土木工程
    • 31 篇 航空宇航科学与技...
  • 594 篇 理学
    • 323 篇 数学
    • 174 篇 生物学
    • 122 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 56 篇 化学
    • 46 篇 系统科学
  • 312 篇 管理学
    • 180 篇 管理科学与工程(可...
    • 144 篇 图书情报与档案管...
    • 74 篇 工商管理
  • 101 篇 医学
    • 92 篇 临床医学
    • 79 篇 基础医学(可授医学...
    • 56 篇 药学(可授医学、理...
  • 42 篇 法学
    • 34 篇 社会学
  • 24 篇 经济学
  • 19 篇 农学
  • 13 篇 教育学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 80 篇 semantics
  • 63 篇 feature extracti...
  • 48 篇 deep learning
  • 45 篇 training
  • 32 篇 computational mo...
  • 32 篇 data models
  • 30 篇 accuracy
  • 29 篇 federated learni...
  • 28 篇 convolution
  • 25 篇 predictive model...
  • 25 篇 machine learning
  • 23 篇 data mining
  • 23 篇 contrastive lear...
  • 22 篇 deep neural netw...
  • 21 篇 image segmentati...
  • 20 篇 neural networks
  • 19 篇 graph neural net...
  • 19 篇 visualization
  • 18 篇 robustness
  • 17 篇 codes

机构

  • 54 篇 shandong provinc...
  • 51 篇 college of compu...
  • 51 篇 national enginee...
  • 46 篇 shandong enginee...
  • 44 篇 key laboratory o...
  • 40 篇 school of cyber ...
  • 39 篇 beijing advanced...
  • 37 篇 school of comput...
  • 37 篇 college of compu...
  • 35 篇 nanyang technolo...
  • 35 篇 university of ch...
  • 29 篇 school of big da...
  • 29 篇 national enginee...
  • 28 篇 college of compu...
  • 28 篇 hubei key labora...
  • 27 篇 peng cheng labor...
  • 27 篇 hubei engineerin...
  • 26 篇 services computi...
  • 25 篇 cluster and grid...
  • 25 篇 school of comput...

作者

  • 73 篇 niyato dusit
  • 32 篇 jin hai
  • 24 篇 sun geng
  • 23 篇 shen linlin
  • 21 篇 hai jin
  • 20 篇 hu shengshan
  • 19 篇 wang jiacheng
  • 17 篇 huang qingming
  • 16 篇 liu ya-feng
  • 16 篇 xu qianqian
  • 15 篇 zhang leo yu
  • 15 篇 li jiahui
  • 15 篇 liu bin
  • 14 篇 huang sheng
  • 14 篇 zhou ziqi
  • 13 篇 cao xiaochun
  • 13 篇 li minghui
  • 12 篇 wang jinbao
  • 12 篇 yang yang
  • 12 篇 li tianrui

语言

  • 1,409 篇 英文
  • 203 篇 其他
  • 35 篇 中文
检索条件"机构=The Key Laboratory of Data Engineering and Visual Computing"
1634 条 记 录,以下是1321-1330 订阅
排序:
MDPL-net: Multi-layer Dictionary Learning Network with Added Skip Dense Connections
MDPL-net: Multi-layer Dictionary Learning Network with Added...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Zhao Zhang Yulin Sun Zheng Zhang Yang Wang Lin Wu Meng Wang School of Computer Science and Technology Soochow University Suzhou China Ministry of Education Key Laboratory of Knowledge Engineering with Big Data School of Computer Science and Information Engineering Hefei University of Technology Hefei China Bio-Computing Research Center Harbin Institute of Technology (Shenzhen) Shenzhen China
Dictionary learning (DL) is powerful for representation learning, while it fails to capture the deep hierarchical information hidden in data. In this paper, we propose a new generalized end-to-end mulita-layer represe... 详细信息
来源: 评论
A Deep Learning Model Incorporating Knowledge Representation Vectors and Its Application in Diabetes Prediction
收藏 引用
Disease Markers 2022年 第1期2022卷 7593750页
作者: Xu, He Zheng, Qunli Zhu, Jingshu Xie, Zuoling Cheng, Haitao Li, Peng Ji, Yimu School of Computer Science Nanjing University of Posts and Telecommunications Nanjing 210023 China Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks Jiangsu Province Nanjing 210023 China Institute of High Performance Computing and Big Data Nanjing University of Posts and Telecommunications Nanjing 210023 China Nanjing Center of HPC China Nanjing 210023 China Jiangsu Research Engineering of HPC and Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing 210023 China Department of Endocrinology Zhongda Hospital Southeast University Nanjing 210009 China
The deep learning methods for various disease prediction tasks have become very effective and even surpass human experts. However, the lack of interpretability and medical expertise limits its clinical application. Th...
来源: 评论
The Most Probable Transition Paths of Stochastic Dynamical Systems: A Sufficient and Necessary Characterization
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Yuanfei Huang, Qiao Duan, Jinqiao School of Mathematics and Statistics Center for Mathematical Sciences Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology Wuhan430074 China Department of Statistics and Data Science National University of Singapore 6 Science Drive 2 Singapore117546 Singapore School of Data Science City University of Hong Kong Kowloon Hong Kong Department of Mathematics Faculty of Sciences University of Lisbon Campo Grande Edifício C6 LisboaPT-1749-016 Portugal Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore637371 Singapore The Dongguan Key Laboratory for Data Science and Intelligent Medicine Department of Mathematics Department of Physics Great Bay University Guangdong Dongguan523000 China
The most probable transition paths of a stochastic dynamical system are the global minimizers of the Onsager–Machlup action functional and can be described by a necessary but not sufficient condition, the Euler–Lagr... 详细信息
来源: 评论
Multispectral Pan-sharpening via Dual-Channel Convolutional Network with Convolutional LSTM Based Hierarchical Spatial-Spectral Feature Fusion
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Dong Bai, Yunpeng Li, Ying School of Computer Science National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Provincial Key Laboratory of Speech & Image Information Processing Northwestern Polytechnical University Xian China School of Computing and Information Systems University of Melbourne VIC3010 Australia
Multispectral pan-sharpening aims at producing a high resolution (HR) multispectral (MS) image in both spatial and spectral domains by fusing a panchromatic (PAN) image and a corresponding MS image. In this paper, we ... 详细信息
来源: 评论
Anomaly detection on attributed networks via contrastive self-supervised learning
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Yixin Li, Zhao Pan, Shirui Gong, Chen Zhou, Chuan Karypis, George The Department of Data Science and AI Faculty of Information Technology Monash University ClaytonVIC3800 Australia The Alibaba Group Hangzhou310000 China The PCA Laboratory Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China The Department of Computing The Hong Kong Polytechnic University Hong Kong The Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100093 China The Department of Computer Science and Engineering University of Minnesota MinneapolisMN55455 United States
Anomaly detection on attributed networks attracts considerable research interests due to wide applications of attributed networks in modeling a wide range of complex systems. Recently, the deep learning-based anomaly ... 详细信息
来源: 评论
Robust Bidirectional Generative Network For Generalized Zero-Shot Learning
Robust Bidirectional Generative Network For Generalized Zero...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yun Xing Sheng Huang Luwen Huangfu Feiyu Chen Yongxin Ge Ministry of Education Key Laboratory of Dependable Service Computing in Cyber Physical Society School of Big Data and Software Engineering at Chongqing University Chongqing P.R.China Fowler College of Business at San Diego State University San Diego USA
In this work, we propose a novel generative approach named Robust Bidirectional Generative Network (RBGN) based on Conditional Generative Adversarial Network (CGAN) for Generalized Zero-shot Learning (GZSL). RBGN empl... 详细信息
来源: 评论
A discovery of Two Slow Pulsars with FAST: "Ronin" from the Globular Cluster M15
arXiv
收藏 引用
arXiv 2023年
作者: Zhou, Dengke Wang, Pei Li, Di Fang, Jianhua Miao, Chenchen Freire, Paulo C.C. Zhang, Lei Zhang, Dandan Chen, Huaxi Feng, Yi Xiao, Yifan Xie, Jintao Zhang, Xu Jin, Chenwu Wang, Han Ke, Yinan Guo, Xuerong Zhao, Rushuang Niu, Chenhui Zhu, Weiwei Xue, Mengyao Wang, Yabiao Wu, Jiafu Gan, Zhenye Sun, Zhongyi Wang, Chengjie Zhang, Junshuo Cao, Jinhuang Lu, Wanjin Zhang, Jie Research Center for Astronomical Computing Zhejiang Laboratory Hangzhou311121 China National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China Institute for Frontiers in Astronomy and Astrophysics Beijing Normal University Beijing102206 China University of Chinese Academy of Sciences Beijing100049 China New Cornerstone Science Laboratory Shenzhen518054 China Max Planck Institut für Radioastronomie Bonn53121 Germany Centre for Astrophysics and Supercomputing Swinburne University of Technology Hawthorn3122 Australia School of Mathematical Sciences School of Physics and Electronic Sciences Guizhou Normal University Guiyang550001 China Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing Guiyang550001 China School of Physics and Electronic Engineering Qilu Normal University Jinan250200 China School of Physics and Electronic Science Guizhou Normal University Guiyang550001 China College of Physical Science and Technology Central China Normal University Wuhan430079 China Tencent Youtu Lab Shanghai201103 China
Globular clusters harbor numerous millisecond pulsars, but long-period pulsars (P 100 ms) are rarely found. In this study, we employed a fast folding algorithm to analyze observational data from multiple globular clus... 详细信息
来源: 评论
Machine learning for modelling unstructured grid data in computational physics: a review
arXiv
收藏 引用
arXiv 2025年
作者: Cheng, Sibo Bocquet, Marc Ding, Weiping Finn, Tobias Sebastian Fu, Rui Fu, Jinlong Guo, Yike Johnson, Eleda Li, Siyi Liu, Che Moro, Eric Newton Pan, Jie Piggott, Matthew Quilodran, Cesar Sharma, Prakhar Wang, Kun Xiao, Dunhui Xue, Xiao Zeng, Yong Zhang, Mingrui Zhou, Hao Zhu, Kewei Arcucci, Rossella CEREA ENPC EDF R&D Institut Polytechnique de Paris Île-de-France France School of Artificial Intelligence and Computer Science Nantong University Jiangsu Nantong226019 China School of Mathematical Sciences Key Laboratory of Intelligent Computing and Applications Tongji University Shanghai200092 China School of Engineering and Materials Science Faculty of Science and Engineering Queen Mary University of London LondonE1 4NS United Kingdom Zienkiewicz Centre for Modelling Data and AI Faculty of Science and Engineering Swansea University SwanseaSA1 8EN United Kingdom Department of Computer Science and Engineering Hong Kong university of science and technology Hong Kong Department of Earth Science & Engineering Imperial College London LondonSW7 2AZ United Kingdom Tianjin Key Laboratory of Imaging and Sensing Microelectronics Technology School of Microelectronics Tianjin University Tianjin300072 China Centre for Health Informatics Cumming School of Medicine University of Calgary CalgaryABT2N 1N4 Canada Department of Community Health Sciences Cumming School of Medicine University of Calgary CalgaryABT2N 1N4 Canada Undaunted Grantham Institute for Climate Change and the Environment Imperial College London LondonSW7 2AZ United Kingdom Culham Campus AbingdonOX14 3DB United Kingdom Centre for Computational Science Department of Chemistry University College London LondonWC1E 6BT United Kingdom Concordia Institute for Information Systems Engineering Concordia University MontrealQCH3G 1M8 Canada School of Mechanical Medical and Process Engineering Faculty of Engineering Queensland University of Technology BrisbaneQLD Australia Department of Chemical Engineering University College London LondonWC1E 6BT United Kingdom
Unstructured grid data are essential for modelling complex geometries and dynamics in computational physics. Yet, their inherent irregularity presents significant challenges for conventional machine learning (ML) tech... 详细信息
来源: 评论
A short-term output power prediction model of wind power based on deep learning of grouped time series
收藏 引用
European Journal of Electrical engineering 2020年 第1期22卷 29-38页
作者: Wang, Yongsheng Gao, Jing Xu, Zhiwei Li, Leixiao College of Computer and Information Engineering Inner Mongolia Agricultural University Hohhot010018 China Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry Hohhot010018 China College of Data Science and Application Inner Mongolia University of Technology Hohhot010080 China Inner Mongolia Autonomous Region Engineering and Technology Research Center of Big Data Based Software Service Hohhot010080 China Institute of Computing Technology Chinese Academy of Sciences Beijing100080 China
The output power prediction of wind power plants is an important guarantee to improve the utilization rate of wind energy and reduce wind curtailment. However, due to the strong randomness of wind energy, the ultra-sh... 详细信息
来源: 评论
NTIRE 2023 Challenge on Light Field Image Super-Resolution: dataset, Methods and Results
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Yingqian Wang, Longguang Liang, Zhengyu Yang, Jungang Timofte, Radu Guo, Yulan Jin, Kai Wei, Zeqiang Yang, Angulia Guo, Sha Gao, Mingzhi Zhou, Xiuzhuang Van Duong, Vinh Huu, Thuc Nguyen Yim, Jonghoon Jeon, Byeungwoo Liu, Yutong Cheng, Zhen Xiao, Zeyu Xu, Ruikang Xiong, Zhiwei Liu, Gaosheng Jin, Manchang Yue, Huanjing Yang, Jingyu Gao, Chen Zhang, Shuo Chang, Song Lin, Youfang Chao, Wentao Wang, Xuechun Wang, Guanghui Duan, Fuqing Xia, Wang Wang, Yan Xia, Peiqi Wang, Shunzhou Lu, Yao Cong, Ruixuan Sheng, Hao Yang, Da Chen, Rongshan Wang, Sizhe Cui, Zhenglong Chen, Yilei Lu, Yongjie Cai, Dongjun An, Ping Salem, Ahmed Ibrahem, Hatem Yagoub, Bilel Kang, Hyun-Soo Zeng, Zekai Wu, Heng National University of Defense Technology China Aviation University of Air Force China University of Würzburg Germany ETH Zürich Switzerland The Shenzhen Campus of Sun Yat-Sen University Sun Yat-Sen University China Bigo Technology Pte. Ltd Singapore Smart Medical Innovation Lab Beijing University of Posts and Telecommunications China Global Explorer Ltd. Suzhou China National Engineering Research Center of Visual Technology School of Computer Science Peking University China School of Artificial Intelligence Beijing University of Posts and Telecommunications China Department of Electrical and Computer Engineering Sungkyunkwan University Korea Republic of University of Science and Technology of China China School of Electrical and Information Engineering Tianjin University China Beijing Key Lab of Traffic Data Analysis and Mining School of Computer and Information Technology Beijing Jiaotong University China Beijing Normal University China Toronto Metropolitan University Canada Beijing Institute of Technology China Shenzhen MSU-BIT University China State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University China Beihang Hangzhou Innovation Institute Yuhang China Faculty of Applied Sciences Macao Polytechnic University China School of Communication and Information Engineering Shanghai University China School of Information and Communication Engineering Chungbuk National University Korea Republic of Guangdong University of Technology China
In this report, we summarize the first NTIRE challenge on light field (LF) image super-resolution (SR), which aims at super-resolving LF images under the standard bicubic degradation with a magnification factor of 4. ... 详细信息
来源: 评论