Nowadays, research on session-based recommender systems (SRSs) is one of the hot spots in the recommendation domain. Existing methods make recommendations based on the user’s current intention (also called short-term...
详细信息
Nowadays, research on session-based recommender systems (SRSs) is one of the hot spots in the recommendation domain. Existing methods make recommendations based on the user’s current intention (also called short-term preference) during a session, often overlooking the specific preferences associated with these intentions. In reality, users usually exhibit diverse preferences for different intentions, and even for the same intention, individual preferences can vary significantly between users. As users interact with items throughout a session, their intentions can shift accordingly. To enhance recommendation quality, it is crucial not only to consider the user’s intentions but also to dynamically learn their varying preferences as these intentions change. In this paper, we propose a novel Intention-sensitive Preference Learning Network (IPLN) including three main modules: intention recognizer, preference detector, and prediction layer. Specifically, the intention recognizer infers the user’s underlying intention within his/her current session by analyzing complex relationships among items. Based on the acquired intention, the preference detector learns the intention-specific preference by selectively integrating latent features from items in the user’s historical sessions. Besides, the user’s general preference is utilized to refine the obtained preference to reduce the potential noise carried from historical records. Ultimately, the fine-tuned preference and intention collaborate to instruct the next-item recommendation in the prediction layer. To prove the effectiveness of the proposed IPLN, we perform extensive experiments on two real-world datasets. The experiment results demonstrate the superiority of IPLN compared with other state-of-the-art models.
Distributed Collaborative Machine Learning (DCML) has emerged in artificial intelligence-empowered edge computing environments, such as the Industrial Internet of Things (IIoT), to process tremendous data generated by...
详细信息
Distributed Collaborative Machine Learning (DCML) has emerged in artificial intelligence-empowered edge computing environments, such as the Industrial Internet of Things (IIoT), to process tremendous data generated by smart devices. However, parallel DCML frameworks require resource-constrained devices to update the entire Deep Neural Network (DNN) models and are vulnerable to reconstruction attacks. Concurrently, the serial DCML frameworks suffer from training efficiency problems due to their serial training nature. In this paper, we propose a Model Pruning-enabled Federated Split Learning framework (MP-FSL) to reduce resource consumption with a secure and efficient training scheme. Specifically, MP-FSL compresses DNN models by adaptive channel pruning and splits each compressed model into two parts that are assigned to the client and the server. Meanwhile, MP-FSL adopts a novel aggregation algorithm to aggregate the pruned heterogeneous models. We implement MP-FSL with a real FL platform to evaluate its performance. The experimental results show that MP-FSL outperforms the state-of-the-art frameworks in model accuracy by up to 1.35%, while concurrently reducing storage and computational resource consumption by up to 32.2% and 26.73%, respectively. These results demonstrate that MP-FSL is a comprehensive solution to the challenges faced by DCML, with superior performance in both reduced resource consumption and enhanced model performance.
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT service...
详细信息
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT services, Mobile Edge computing (MEC) has emerged as an indispensable technology in smart health. Benefiting from the cost-effectiveness of deployment, unmanned aerial vehicles (UAVs) equipped with MEC servers in Non-Orthogonal Multiple Access (NOMA) have emerged as a promising solution for providing smart health services in proximity to medical devices (MDs). However, the escalating number of MDs and the limited availability of communication resources of UAVs give rise to a significant increase in transmission latency. Moreover, due to the limited communication range of UAVs, the geographically-distributed MDs lead to workload imbalance of UAVs, which deteriorates the service response delay. To this end, this paper proposes a UAV-enabled Distributed computation Offloading and Power control method with Multi-Agent, named DOPMA, for NOMA-based IoMT environment. Specifically, this paper introduces computation and transmission queue models to analyze the dynamic characteristics of task execution latency and energy consumption. Moreover, a credit assignment scheme-based reward function is designed considering both system-level rewards and rewards tailored to each MD, and an improved multi-agent deep deterministic policy gradient algorithm is developed to derive offloading and power control decisions independently. Extensive simulations demonstrate that the proposed method outperforms existing schemes, achieving \(7.1\%\) reduction in energy consumption and \(16\%\) decrease in average delay.
The Anchor-based Multi-view Subspace Clustering (AMSC) has turned into a favourable tool for large-scale multi-view clustering. However, there still exist some limitations to the current AMSC approaches. First, they t...
详细信息
The Anchor-based Multi-view Subspace Clustering (AMSC) has turned into a favourable tool for large-scale multi-view clustering. However, there still exist some limitations to the current AMSC approaches. First, they typically recover anchor graph structure in the original linear space, restricting their feasibility for nonlinear scenarios. Second, they usually overlook the potential benefits of jointly capturing the inter-view and intra-view information for enhancing the anchor representation learning. Third, these approaches mostly perform anchor-based subspace learning by a specific matrix norm, neglecting the latent high-order correlation across different views. To overcome these limitations, this paper presents an efficient and effective approach termed Large-scale Tensorized Multi-view Kernel Subspace Clustering (LTKMSC). Different from the existing AMSC approaches, our LTKMSC approach exploits both inter-view and intra-view awareness for anchor-based representation building. Concretely, the low-rank tensor learning is leveraged to capture the high-order correlation (i.e., the inter-view complementary information) among distinct views, upon which the \(l_{1,2}\) norm is imposed to explore the intra-view anchor graph structure in each view. Moreover, the kernel learning technique is leveraged to explore the nonlinear anchor-sample relationships embedded in multiple views. With the unified objective function formulated, an efficient optimization algorithm that enjoys low computational complexity is further designed. Extensive experiments on a variety of multi-view datasets have confirmed the efficiency and effectiveness of our approach when compared with the other competitive approaches.
暂无评论