咨询与建议

限定检索结果

文献类型

  • 169 篇 会议
  • 146 篇 期刊文献

馆藏范围

  • 315 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 252 篇 工学
    • 159 篇 计算机科学与技术...
    • 144 篇 软件工程
    • 71 篇 信息与通信工程
    • 48 篇 光学工程
    • 40 篇 生物工程
    • 34 篇 机械工程
    • 27 篇 电气工程
    • 26 篇 生物医学工程(可授...
    • 24 篇 电子科学与技术(可...
    • 21 篇 控制科学与工程
    • 12 篇 化学工程与技术
    • 10 篇 交通运输工程
    • 9 篇 仪器科学与技术
    • 8 篇 材料科学与工程(可...
    • 7 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
  • 142 篇 理学
    • 64 篇 数学
    • 50 篇 物理学
    • 44 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 12 篇 化学
    • 11 篇 系统科学
  • 64 篇 管理学
    • 44 篇 图书情报与档案管...
    • 24 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 13 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 11 篇 deep learning
  • 11 篇 training
  • 10 篇 semantics
  • 9 篇 feature extracti...
  • 7 篇 compressed sensi...
  • 7 篇 magnetic resonan...
  • 7 篇 convolution
  • 6 篇 image coding
  • 6 篇 image classifica...
  • 6 篇 image reconstruc...
  • 5 篇 generative adver...
  • 5 篇 image segmentati...
  • 5 篇 face recognition
  • 5 篇 optimization
  • 5 篇 estimation
  • 5 篇 computer vision
  • 5 篇 encoding
  • 5 篇 shape
  • 5 篇 data models
  • 4 篇 image enhancemen...

机构

  • 25 篇 shenyang institu...
  • 24 篇 university of ch...
  • 23 篇 fujian key labor...
  • 20 篇 school of comput...
  • 18 篇 school of comput...
  • 16 篇 school of comput...
  • 14 篇 institutes for r...
  • 14 篇 jiangsu key labo...
  • 11 篇 college of compu...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 9 篇 jiangsu key labo...
  • 8 篇 key laboratory o...
  • 8 篇 fujian key labor...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 key laboratory o...

作者

  • 30 篇 yang jian
  • 22 篇 gong maoguo
  • 21 篇 liu fang
  • 21 篇 jiao licheng
  • 20 篇 wang da-han
  • 18 篇 gong chen
  • 15 篇 wu yue
  • 12 篇 li hao
  • 11 篇 licheng jiao
  • 10 篇 ma wenping
  • 9 篇 zhu shunzhi
  • 9 篇 jian yang
  • 8 篇 luo haibo
  • 8 篇 miao qiguang
  • 8 篇 haibo luo
  • 8 篇 wan sheng
  • 7 篇 da-han wang
  • 7 篇 hao hongxia
  • 6 篇 weng wei
  • 6 篇 shang fanhua

语言

  • 301 篇 英文
  • 11 篇 中文
  • 4 篇 其他
检索条件"机构=The Key Laboratory of Image Understanding and Computer Vision"
315 条 记 录,以下是181-190 订阅
排序:
94 GHz Three-Dimensional Imaging Radar for Environmental Detection  8
94 GHz Three-Dimensional Imaging Radar for Environmental Det...
收藏 引用
8th Asia-Pacific Conference on Antennas and Propagation, APCAP 2019
作者: Wu, HongMing Qi, Feng Wang, Jinkuan Northeastern University College of Information Science and Engineering Shenyang110819 China Chinese Academy of Sciences Shenyang Institute of Automation Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110016 China Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Sciences Shenyang110016 China Key Lab of Image Understanding and Computer Vision Liaoning Province Shenyang110016 China
At present, With the development of technology, the high resolution of millimeter wave (terahertz) can be applied to environmental sensing imaging. In this paper, Using the frequency-modulated continuous-wave (FMCW) r... 详细信息
来源: 评论
Fast and accurate single-image depth estimation on mobile devices, mobile AI 2021 challenge: Report
arXiv
收藏 引用
arXiv 2021年
作者: Ignatov, Andrey Malivenko, Grigory Plowman, David Shukla, Samarth Timofte, Radu Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Wang, Yiran Li, Xingyi Shi, Min Xian, Ke Cao, Zhiguo Du, Jin-Hua Wu, Pei-Lin Ge, Chao Yao, Jiaoyang Tu, Fangwen Li, Bo Yoo, Jung Eun Seo, Kwanggyoon Xu, Jialei Li, Zhenyu Liu, Xianming Jiang, Junjun Chen, Wei-Chi Joya, Shayan Fan, Huanhuan Kang, Zhaobing Li, Ang Feng, Tianpeng Liu, Yang Sheng, Chuannan Yin, Jian Benavides, Fausto T. Computer Vision Lab ETH Zurich Switzerland Ltd AI Witchlabs Switzerland Tencent GY-Lab China Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Nanjing Artificial Intelligence Chip Research Institute of Automation Chinese Academy of Sciences China Black Sesame Technologies Inc. Singapore Singapore Visual Media Lab KAIST Korea Republic of Harbin Institute of Technology China Peng Cheng Laboratory China Multimedia and Computer Vision Laboratory National Cheng Kung University Taiwan Samsung Research UK United Kingdom OPPO Research Institute China ETH Zurich Switzerland
Depth estimation is an important computer vision problem with many practical applications to mobile devices. While many solutions have been proposed for this task, they are usually very computationally expensive and t... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
Technique Report of CVPR 2024 PBDL Challenges
arXiv
收藏 引用
arXiv 2024年
作者: Lu, Xiaoqiang Jiao, Licheng Liu, Fang Liu, Xu Li, Lingling Ma, Wenping Yang, Shuyuan Xie, Haiyang Zhao, Jian Huang, Shihua Cheng, Peng Shen, Xi Wang, Zheng An, Shuai Zhu, Caizhi Li, Xuelong Chen, Linwei Fu, Ying Zhang, Tao Liu, Yu Yan, Chenggang Wang, Zichun Wang, Qinliang Liu, Yang Yu, Xinyue Jia, Sen Zhang, Junpei Chen, Puhua Chen, Xiang Li, Hao Pan, Jinshan Xie, Chuanlong Chen, Hongming Li, Mingrui Deng, Tianchen Huang, Jingwei Li, Yufeng Wan, Fei Xu, Bingxin Cheng, Jian Liu, Hongzhe Xu, Cheng Zou, Yuxiang Pan, Weiguo Dai, Songyin Jiang, Linyan Song, Bingyi An, Zhuoyu Lei, Haibo Luo, Qing Song, Jie Liu, Yuan Li, Qihang Zhang, Haoyuan Wang, Lingfeng Chen, Wei Luo, Aling Li, Cheng Cao, Jun Chen, Shu Dou, Zifei Liu, Xinyu Zhang, Jing Zhang, Kexin Yang, Yuting Zhang, Liwen Xu, Zhe Gou, Dingyong Li, Cong Xu, Senyan Zhang, Yunkang Jiang, Siyuan Liu, Qinglin Yu, Wei Lv, Xiaoqian Li, Jianing Zhang, Shengping Ji, Xiangyang Zou, Yunhao Chen, Yuanpei Zhang, Yuhan Peng, Weihang Gou, Xuejian Zhao, Shizhan Zhang, Yanzhao Yan, Libo Guo, Yuwei Li, Guoxin Gao, Qiong Che, Chenyue Sun, Long School of Artificial Intelligence Xidian University China School of Computer Science Wuhan University China Intellindust China Beijing Forestry University China China Telecom China Harbin Institute of Technology China Northwestern Polytechnical University China China Telecom China Beijing Institute of Technology China Lishui Institute of Hangzhou Dianzi University China Tsinghua University China Intelligent Perception and Image Understanding Lab Xidian University China Nanjing University of Science and Technology China Shenyang Aerospace University China Dalian University of Technology China Shanghai Jiao Tong University China University of Electronic Science and Technology of China China Beijing Key Laboratory of Information Service Engineering Beijing Union University Beijing100101 China College of Robotics Beijing Union University China Tencent China Sanechips Technology Co. LTD. China Xiaomi Inc. China ZTE Corporation China University of Science and Technology of China China Peking University China Intelligent Science & Technology Academy of CASIC China
The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies. By leveraging the principles of physics to inform and enhance deep learning models, ... 详细信息
来源: 评论
Nearest-neighbour Joint Probabilistic Data Association Filter Based on Random Finite Set
Nearest-neighbour Joint Probabilistic Data Association Filte...
收藏 引用
International Conference on Control, Automation and Information Sciences (ICCAIS)
作者: Shuang Liang Yun Zhu Hao Li Maoguo Gong Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education Xidian University Xi'an China Key Laboratory of Modern Teaching Technology School of Computer Science Shaanxi Normal University Xi'an China
The joint probabilistic data association (JPDA) filter is effective for multitarget, but it suffers from the track coalescence problem. To solve this problem, an improved nearest-neighbour JPDA filter based on random ... 详细信息
来源: 评论
Distributed Multi-Objective Community Detection in Large-Scale and Complex Networks
Distributed Multi-Objective Community Detection in Large-Sca...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Shuang Liang Hao Li Maoguo Gong Yue Wu Yun Zhu Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education Xidian University Xi'an China Key Laboratory of Modern Teaching Technology of Ministry of Education School of Computer Science Shaanxi Normal University Xi'an China
Community detection has arisen as an important topic of many different research areas such as sociology, biology and computer science. However, with the appearance of "big data" and the rapid increasing size... 详细信息
来源: 评论
image Super-resolution Reconstruction Based on Bionic Intelligence
Image Super-resolution Reconstruction Based on Bionic Intell...
收藏 引用
International Conference on image, vision and Computing (ICIVC)
作者: Xin Wang Qiong Wang Guofang Lv Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing China College of Computer and Information Hohai University Nanjing China
Traditional super-resolution reconstruction methods usually process a low resolution image as a whole, which ignores the differences among image patches, resulting in ineffective reconstruction result. In this paper, ... 详细信息
来源: 评论
Efficient relaxed gradient support pursuit for sparsity constrained non-convex optimization
arXiv
收藏 引用
arXiv 2019年
作者: Shang, Fanhua Wei, Bingkun Liu, Hongying Liu, Yuanyuan Zhuo, Jiacheng Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education School of Artificial Intelligence Xidian University China Department of Computer Science University of Texas Austin United States
Large-scale non-convex sparsity-constrained problems have recently gained extensive attention. Most existing deterministic optimization methods (e.g., GraSP) are not suitable for large-scale and high-dimensional probl... 详细信息
来源: 评论
SoccerNet 2023 Challenges Results
arXiv
收藏 引用
arXiv 2023年
作者: Cioppa, Anthony Giancola, Silvio Somers, Vladimir Magera, Floriane Zhou, Xin Mkhallati, Hassan Deliège, Adrien Held, Jan Hinojosa, Carlos Mansourian, Amir M. Miralles, Pierre Barnich, Olivier De Vleeschouwer, Christophe Alahi, Alexandre Ghanem, Bernard Van Droogenbroeck, Marc Kamal, Abdullah Maglo, Adrien Clapés, Albert Abdelaziz, Amr Xarles, Artur Orcesi, Astrid Scott, Atom Liu, Bin Lim, Byoungkwon Chen, Chen Deuser, Fabian Yan, Feng Yu, Fufu Shitrit, Gal Wang, Guanshuo Choi, Gyusik Kim, Hankyul Guo, Hao Fahrudin, Hasby Koguchi, Hidenari Ardö, Håkan Salah, Ibrahim Yerushalmy, Ido Muhammad, Iftikar Uchida, Ikuma Be'ery, Ishay Rabarisoa, Jaonary Lee, Jeongae Fu, Jiajun Yin, Jianqin Xu, Jinghang Nang, Jongho Denize, Julien Li, Junjie Zhang, Junpei Kim, Juntae Synowiec, Kamil Kobayashi, Kenji Zhang, Kexin Habel, Konrad Nakajima, Kota Jiao, Licheng Ma, Lin Wang, Lizhi Wang, Luping Li, Menglong Zhou, Mengying Nasr, Mohamed Abdelwahed, Mohamed Liashuha, Mykola Falaleev, Nikolay Oswald, Norbert Jia, Qiong Pham, Quoc-Cuong Song, Ran Hérault, Romain Peng, Rui Chen, Ruilong Liu, Ruixuan Baikulov, Ruslan Fukushima, Ryuto Escalera, Sergio Lee, Seungcheon Chen, Shimin Ding, Shouhong Someya, Taiga Moeslund, Thomas B. Li, Tianjiao Shen, Wei Zhang, Wei Li, Wei Dai, Wei Luo, Weixin Zhao, Wending Zhang, Wenjie Yang, Xinquan Ma, Yanbiao Joo, Yeeun Zeng, Yingsen Gan, Yiyang Zhu, Yongqiang Zhong, Yujie Ruan, Zheng Li, Zhiheng Huang, Zhijian Meng, Ziyu Belgium Saudi Arabia Sportradar Norway UCLouvain Belgium EPFL Switzerland EVS Broadcast Equipment Belgium Baidu Research United States Belgium Sharif University of Technology Iran Footovision France Zewail City of Science Technology and Innovation Egypt Université Paris-Saclay CEA France Universitat de Barcelona Spain Computer Vision Center Spain Nagoya University Japan Research Center for Applied Mathematics and Machine Intelligence Zhejiang Lab China AIBrain United States OPPO Research Institute China Germany Meituan China Tencent Youtu Lab China Amazon Prime Video Sport United States Sogang University Korea Republic of The University of Tokyo Japan Spiideo Sweden University of Tsukuba Japan School of Artificial Intelligence Beijing University of Posts and Telecommunications China Normandie Univ INSA Rouen LITIS France Shanghai Jiao Tong University China Key Laboratory of Intelligent Perception and Image Understanding The Ministry of Education Xidian University China NASK - National Research Institute Poland Robo Space China Tongji University China Sportlight Technology United Kingdom School of Control Science and Engineering Shandong University China lRomul Russia Aalborg University Denmark Turing AI Cultures GmbH Germany Information Systems Technology and Design Singapore University of Technology and Design Singapore Sun Yat-sen University China
The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three mai... 详细信息
来源: 评论
DUAL-CHANNEL CONVOLUTIONAL NEURAL NETWORK FOR POLARIMETRIC SAR imageS CLASSIFICATION
DUAL-CHANNEL CONVOLUTIONAL NEURAL NETWORK FOR POLARIMETRIC S...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium
作者: Wenqiang Hua Shuang Wang Wen Xie Yanhe Guo Xiaomin Jin School of Computer Science and Technology Xi’an University of Posts and Telecommunications Xi’an China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China Xidian University Xi'an China
This paper presents a new dual-channel convolutional neural network (Dc-CNN) for Polarimetric synthetic aperture radar (PolSAR) image classification when labeled samples are small. First, a neighborhood minimum spanni... 详细信息
来源: 评论