咨询与建议

限定检索结果

文献类型

  • 169 篇 会议
  • 145 篇 期刊文献

馆藏范围

  • 314 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 249 篇 工学
    • 158 篇 计算机科学与技术...
    • 144 篇 软件工程
    • 71 篇 信息与通信工程
    • 48 篇 光学工程
    • 40 篇 生物工程
    • 34 篇 机械工程
    • 26 篇 电气工程
    • 26 篇 生物医学工程(可授...
    • 24 篇 电子科学与技术(可...
    • 21 篇 控制科学与工程
    • 12 篇 化学工程与技术
    • 10 篇 交通运输工程
    • 9 篇 仪器科学与技术
    • 8 篇 材料科学与工程(可...
    • 7 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
  • 142 篇 理学
    • 64 篇 数学
    • 50 篇 物理学
    • 44 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 12 篇 化学
    • 11 篇 系统科学
  • 63 篇 管理学
    • 44 篇 图书情报与档案管...
    • 23 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 12 篇 医学
    • 12 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 11 篇 deep learning
  • 11 篇 training
  • 9 篇 semantics
  • 9 篇 feature extracti...
  • 7 篇 compressed sensi...
  • 7 篇 magnetic resonan...
  • 7 篇 convolution
  • 6 篇 image coding
  • 6 篇 image classifica...
  • 6 篇 image reconstruc...
  • 5 篇 generative adver...
  • 5 篇 image segmentati...
  • 5 篇 face recognition
  • 5 篇 optimization
  • 5 篇 estimation
  • 5 篇 computer vision
  • 5 篇 encoding
  • 5 篇 shape
  • 4 篇 image enhancemen...
  • 4 篇 object detection

机构

  • 25 篇 shenyang institu...
  • 24 篇 university of ch...
  • 23 篇 fujian key labor...
  • 20 篇 school of comput...
  • 18 篇 school of comput...
  • 16 篇 school of comput...
  • 14 篇 institutes for r...
  • 14 篇 jiangsu key labo...
  • 11 篇 college of compu...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 9 篇 jiangsu key labo...
  • 8 篇 key laboratory o...
  • 8 篇 fujian key labor...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 key laboratory o...

作者

  • 30 篇 yang jian
  • 22 篇 gong maoguo
  • 20 篇 wang da-han
  • 20 篇 liu fang
  • 20 篇 jiao licheng
  • 18 篇 gong chen
  • 15 篇 wu yue
  • 12 篇 li hao
  • 11 篇 licheng jiao
  • 10 篇 ma wenping
  • 9 篇 zhu shunzhi
  • 9 篇 jian yang
  • 8 篇 luo haibo
  • 8 篇 miao qiguang
  • 8 篇 haibo luo
  • 8 篇 wan sheng
  • 7 篇 da-han wang
  • 7 篇 hao hongxia
  • 6 篇 weng wei
  • 6 篇 shang fanhua

语言

  • 300 篇 英文
  • 11 篇 中文
  • 4 篇 其他
检索条件"机构=The Key Laboratory of Image Understanding and Computer Vision"
314 条 记 录,以下是41-50 订阅
排序:
Generalized Zero-shot Learning Based on Dual Latent Space Reconstruction
Generalized Zero-shot Learning Based on Dual Latent Space Re...
收藏 引用
2022 International Conference on Intelligent Systems, Communications, and computer Networks, ISCCN 2022
作者: Xu, Yangdongfang Yang, Guan Liu, Xiaoming Liu, Yang School of Computer Science Zhongyuan University of Technology Zhengzhou China Henan Key Laboratory on Public Opinion Intelligent Analysis Zhengzhou China Zhengzhou Key Laboratory of Text Processing and Image Understanding Zhengzhou China School of Telecommunications Engineering Xidian University Xi’an China
Generalized Zero-Shot Learning (GZSL) is characterized as a training process that comprises visual samples from seen classes and semantic samples from seen and unseen classes, followed by a testing process that classi... 详细信息
来源: 评论
Clothed Human Performance Capture with a Double-layer Neural Radiance Fields
Clothed Human Performance Capture with a Double-layer Neural...
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition, CVPR 2023
作者: Wang, Kangkan Zhang, Guofeng Cong, Suxu Yang, Jian Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education China Jiangsu Key Lab of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology China State Key Laboratory of CAD&CG Zhejiang University China
This paper addresses the challenge of capturing performance for the clothed humans from sparse-view or monocular videos. Previous methods capture the performance of full humans with a personalized template or recover ... 详细信息
来源: 评论
CAT: a coarse-to-fine attention tree for semantic change detection
收藏 引用
Visual Intelligence 2023年 第1期1卷 1-12页
作者: Wei, Xiu-Shen Xu, Yu-Yan Zhang, Chen-Lin Xia, Gui-Song Peng, Yu-Xin School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China State Key Laboratory of Integrated Services Networks Xidian University Xi’an China Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education and Jiangsu Key Lab of Image and Video Understanding for Social Security Nanjing China 4Paradigm Inc Beijing China School of Computer Science and Institute of Artificial Intelligence Wuhan University Wuhan China Wangxuan Institute of Computer Technology Peking University Beijing China
Semantic change detection (SCD) and land cover mapping (LCM) are always treated as a dual task in the field of remote sensing. However, due to diverse real-world scenarios, many SCD categories are not easy to be clear... 详细信息
来源: 评论
CL-BioGAN: Biologically-Inspired Cross-Domain Continual Learning for Hyperspectral Anomaly Detection
收藏 引用
IEEE Transactions on Geoscience and Remote Sensing 2025年 63卷
作者: Wang, Jianing Hua, Zheng Zhang, Wan Hao, Shengjia Yao, Yuqiong Gong, Maoguo Xidian University Key Laboratory of Collaborative Intelligence Systems Ministry of Education School of Computer Science and Technology Xi’an710071 China Xidian University Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China School of Artificial Intelligence Xi’an710071 China Xidian University Key Laboratory of Collaborative Intelligence Systems Ministry of Education Xi’an710071 China
Memory stability and learning flexibility in continual learning (CL) is a core challenge for cross-scene Hyperspectral Anomaly Detection (HAD) task. Biological neural networks can actively forget history knowledge tha... 详细信息
来源: 评论
Deep Learning Methods for Ship Classification: From Visible to Infrared images  5
Deep Learning Methods for Ship Classification: From Visible ...
收藏 引用
5th International Conference on Robotics, Intelligent Control and Artificial Intelligence, RICAI 2023
作者: Liu, Tianci Qin, Hengjia Zhan, Zhuo Liu, Yunpeng Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110169 China University of Chinese Academy of Sciences Beijing100049 China Chinese Academy of Sciences Key Laboratory of Opto-Electronic Information Processing Shenyang110016 China Key Laboratory of Image Understanding and Computer Vision Liaoning Province Shenyang110016 China The Third Military Representative Office of the Air Force Equipment Department in Shenyang Region Liaoning Province Shenyang110027 China
Deep learning methods have achieved excellent performances on visual tasks of target recognition and classification. The rapid development of autonomous seafaring vessels comes up with the requirement to recognize oth... 详细信息
来源: 评论
Autoencoder-Based Latent Block-Diagonal Representation for Subspace Clustering
收藏 引用
IEEE Transactions on Cybernetics 2022年 第6期52卷 5408-5418页
作者: Xu, Yesong Chen, Shuo Li, Jun Han, Zongyan Yang, Jian Nanjing University of Science and Technology PCA Laboratory Key Lab. of Intelligent Percept. and Syst. for High-Dimensional Information of Ministry of Education Nanjing210094 China Nanjing University of Science and Technology Jiangsu Key Laboratory of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing210094 China RIKEN Center for Advanced Intelligence Project Tokyo103-0027 Japan Nanjing University of Science and Technology School of Computer Science and Engineering Nanjing210094 China
Block-diagonal representation (BDR) is an effective subspace clustering method. The existing BDR methods usually obtain a self-expression coefficient matrix from the original features by a shallow linear model. Howeve... 详细信息
来源: 评论
Collaborative Weighting for Graph Convolutional Networks
Journal of Network Intelligence
收藏 引用
Journal of Network Intelligence 2023年 第2期8卷 432-447页
作者: Chen, Yong Xie, Xiao-Zhu Weng, Wei Zhang, Shan-Dan Li, Tong College of Computer and Information Engineering Xiamen University of Technology Xiamen361024 China College of Computer and Information Engineering Xiamen University of Technology Fujian Key Laboratory of Pattern Recognition and Image Understanding Xiamen361024 China
Graph neural network (GNN), as a powerful method for graph representation, has attracted extensive research interest. Recently, Graph Convolutional Network (GCN) and Graph Attention Network (GAT) have shown superior p... 详细信息
来源: 评论
Topic Embedded Representation Enhanced Variational Wasserstein Autoencoder for Text Modeling  5
Topic Embedded Representation Enhanced Variational Wasserste...
收藏 引用
5th IEEE International Conference on Electronics Technology, ICET 2022
作者: Xiang, Zheng Liu, Xiaoming Yang, Guan Liu, Yang Zhongyuan University of Technology School of Computer Science Zhengzhou China Henan Key Laboratory on Public Opinion Intelligent Analysis Zhengzhou China Key Laboratory of text processing and image understanding Zhengzhou China Xidian University State Key Laboratory of Integrated Services Networks Xi'an China Shandong University Key Lab of Cryptologic Technology and Information Security Ministry of Education Xi'an China
Variational Autoencoder (VAE) is now popular in modeling and language generation tasks, which need to pay attention to the diversity of generation results. The existing models are insufficient in capturing the built-i... 详细信息
来源: 评论
A Single-Loop Accelerated Extra-Gradient Difference Algorithm with Improved Complexity Bounds for Constrained Minimax Optimization  37
A Single-Loop Accelerated Extra-Gradient Difference Algorith...
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Liu, Yuanyuan Shang, Fanhua An, Weixin Liu, Junhao Liu, Hongying Lin, Zhouchen Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education School of Artificial Intelligence Xidian University China School of Computer Science and Technology College of Intelligence and Computing Tianjin University China Medical College Tianjin University China National Key Lab of General AI School of Intelligence Science and Technology Peking University China Institute for Artificial Intelligence Peking University China Peng Cheng Laboratory China
In this paper, we propose a novel extra-gradient difference acceleration algorithm for solving constrained nonconvex-nonconcave (NC-NC) minimax problems. In particular, we design a new extra-gradient difference step t... 详细信息
来源: 评论
Interactive Semantic Segmentation With Weak Supervision  22
Interactive Semantic Segmentation With Weak Supervision
收藏 引用
8th International Conference on Computing and Artificial Intelligence, ICCAI 2022
作者: Gong, Lei Wang, Da-Han Wu, Yun Ye, Hai-Li Zhu, Chen-Yan School of Computer and Information Engineering Xiamen University of Technology Xiamen361024 China Fujian Key Laboratory of Pattern Recognition and Image Understanding Xiamen361024 China Medical Diagnostic Systems Co. Ltd. Xiamen361000 China
At present, the most advanced semantic segmentation model training mainly relies on pixel-level annotation, that is, annotating the category of each pixel of an image. Such annotation usually is time-consuming and exp... 详细信息
来源: 评论