咨询与建议

限定检索结果

文献类型

  • 2,263 篇 会议
  • 1,485 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 3,753 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,361 篇 工学
    • 1,508 篇 计算机科学与技术...
    • 1,231 篇 软件工程
    • 601 篇 信息与通信工程
    • 386 篇 电子科学与技术(可...
    • 329 篇 电气工程
    • 286 篇 控制科学与工程
    • 191 篇 生物工程
    • 181 篇 机械工程
    • 176 篇 光学工程
    • 126 篇 生物医学工程(可授...
    • 121 篇 化学工程与技术
    • 115 篇 仪器科学与技术
    • 83 篇 动力工程及工程热...
    • 68 篇 材料科学与工程(可...
    • 63 篇 网络空间安全
    • 51 篇 建筑学
    • 45 篇 土木工程
  • 1,423 篇 理学
    • 913 篇 数学
    • 414 篇 物理学
    • 227 篇 生物学
    • 217 篇 统计学(可授理学、...
    • 131 篇 化学
    • 123 篇 系统科学
  • 565 篇 管理学
    • 299 篇 管理科学与工程(可...
    • 283 篇 图书情报与档案管...
    • 100 篇 工商管理
  • 95 篇 医学
    • 78 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 60 篇 法学
    • 47 篇 社会学
  • 49 篇 农学
  • 33 篇 经济学
  • 24 篇 教育学
  • 11 篇 军事学
  • 9 篇 哲学
  • 8 篇 文学
  • 8 篇 艺术学

主题

  • 142 篇 feature extracti...
  • 104 篇 semantics
  • 88 篇 training
  • 78 篇 laboratories
  • 68 篇 information proc...
  • 66 篇 computational mo...
  • 64 篇 image segmentati...
  • 57 篇 optimization
  • 53 篇 data mining
  • 53 篇 computers
  • 50 篇 face recognition
  • 49 篇 signal processin...
  • 49 篇 accuracy
  • 48 篇 visualization
  • 48 篇 robustness
  • 47 篇 signal processin...
  • 45 篇 deep learning
  • 42 篇 support vector m...
  • 42 篇 machine learning
  • 42 篇 humans

机构

  • 432 篇 key laboratory o...
  • 224 篇 university of ch...
  • 209 篇 key laboratory o...
  • 102 篇 key laboratory o...
  • 83 篇 key laboratory o...
  • 68 篇 school of comput...
  • 66 篇 peng cheng labor...
  • 63 篇 key laboratory o...
  • 63 篇 college of compu...
  • 54 篇 key laboratory o...
  • 53 篇 anhui university...
  • 53 篇 college of mathe...
  • 48 篇 key laboratory o...
  • 48 篇 school of comput...
  • 46 篇 hunan provincial...
  • 46 篇 the key laborato...
  • 45 篇 key laboratory o...
  • 43 篇 graduate univers...
  • 42 篇 college of infor...
  • 40 篇 fujian provincia...

作者

  • 90 篇 zhongzhi shi
  • 86 篇 huang zhixiang
  • 81 篇 shi zhongzhi
  • 76 篇 li yingsong
  • 73 篇 shiguang shan
  • 73 篇 xilin chen
  • 70 篇 zhixiang huang
  • 66 篇 huang qingming
  • 62 篇 liu qun
  • 58 篇 yingsong li
  • 56 篇 xianliang wu
  • 53 篇 shi minjia
  • 46 篇 xu qianqian
  • 41 篇 wu xianliang
  • 39 篇 wu xian-liang
  • 39 篇 feng yang
  • 36 篇 luo bin
  • 33 篇 he qing
  • 33 篇 bin luo
  • 32 篇 yang zhiyong

语言

  • 3,199 篇 英文
  • 469 篇 其他
  • 105 篇 中文
检索条件"机构=The Key Laboratory of Intelligent Computing and Signal Processing"
3753 条 记 录,以下是1151-1160 订阅
排序:
Improving Neural Radiance Fields with Depth-aware Optimization for Novel View Synthesis
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Shu Li, Junyao Zhang, Yang Zou, Beiji The School of Computer Science School of Cyberspace Security Xiangtan University Xiangtan China Key Laboratory of Intelligent Computing & Information Processing Ministry of Education Xiangtan China School of Computer Science and engineering Central South University Changsha China
With dense inputs, Neural Radiance Fields (NeRF) is able to render photo-realistic novel views under static conditions. Although the synthesis quality is excellent, existing NeRF-based methods fail to obtain moderate ... 详细信息
来源: 评论
SFDA-rPPG: Source-Free Domain Adaptive Remote Physiological Measurement with Spatio-Temporal Consistency
arXiv
收藏 引用
arXiv 2024年
作者: Xie, Yiping Yu, Zitong Wu, Bingjie Xie, Weicheng Shen, Linlin Computer Vision Institute School of Computer Science & Software Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Singapore
Remote Photoplethysmography (rPPG) is a non-contact method that uses facial video to predict changes in blood volume, enabling physiological metrics measurement. Traditional rPPG models often struggle with poor genera... 详细信息
来源: 评论
SFTA: Spiking Neural Networks Vulnerable to Spiking Feature Transferable Attack
SFTA: Spiking Neural Networks Vulnerable to Spiking Feature ...
收藏 引用
IEEE International Symposium on Parallel and Distributed processing with Applications and IEEE International Conference on Ubiquitous computing and Communications (ISPA/IUCC)
作者: Xuanwei Lin Chen Dong Ximeng Liu College of Computer and Data Science Fuzhou University Fujian Key Laboratory of Network Computing and Intelligent Information Processing (Fuzhou University) Key Lab of Information Security of Network Systems (Fuzhou University)
Many recent works have shown that spiking neural networks (SNNs) are vulnerable to well-crafted adversarial attacks in the white-box setting, which may lead to misclassification of the trained model. However, the info... 详细信息
来源: 评论
Staggered Grid Scheme for the FFT-Based Methods
收藏 引用
Chinese Journal of Electronics 2019年 第5期28卷 1066-1072页
作者: XIE Jiaye KONG Weibin PANG Lili SONG Weiju HUANG Zhixiang WU Xianliang Industrial Center Nanjing Institute of Technology State Key Laboratory of Millimeter Waves College of Information Engineering Yancheng Institute of Technology Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Anhui University
A staggered grid scheme is proposed to reduce both the total memory requirement and the CPU time of generating the corrected near matrix in the FFTbased methods. Two sets of Cartesian grids are used to project the sou... 详细信息
来源: 评论
Vision-Based Fruit Recognition Via Multi-Scale Attention Cnn
SSRN
收藏 引用
SSRN 2022年
作者: Min, Weiqing Wang, Zhiling Yang, Jiahao Liu, Chunlin Jiang, Shuqiang The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
Fruit quality assessment, grading and sorting are of vital importance to fruit processing, and all these involve fruit recognition. Vision-based fruit recognition can recognize fruit automatically and further support ... 详细信息
来源: 评论
Enhancing Sample Utilization in Noise-robust Deep Metric Learning with Subgroup-based Positive-pair Selection
arXiv
收藏 引用
arXiv 2025年
作者: Yu, Zhipeng Xu, Qianqian Jiang, Yangbangyan Sun, Yingfei Huang, Qingming The School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing100049 China The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China The School of Computer Science and Technology University of Chinese Academy of Sciences Beijing101408 China
The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving the robustness towards noisy labels in classific... 详细信息
来源: 评论
Latent multi-view subspace clustering based on Laplacian regularized representation
Latent multi-view subspace clustering based on Laplacian reg...
收藏 引用
International Workshop on Advanced Computational Intelligence (IWACI)
作者: Wei Guo Hangjun Che Man-Fai Leung Nankun Mu Xiangguang Dai Yuming Feng School of Electronic and Information Engineering Southwest University Chongqing China School of Electronic Information Engineering Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing Southwest University Chongqing China School of Computing and Information Science Faculty of Science and Engineering Anglia Ruskin University Cambridge UK Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education College of Computer Science Chongqing University Chongqing China School of Computer Science and Engineering Chongqing Three Gorges University Chongqing China Key Laboratory of Intelligent Information Processing and Control Chongqing Three Gorges University Chongqing China
We propose a latent multi-view subspace clustering model based on Laplacian regularized representation. To emphasize the information of the representation matrix at the local level and reflect the grouping effect of c...
来源: 评论
Heterophilic Graph Representation Learning Based on Multi-Order Information Extraction and High and Low Pass Filters
Heterophilic Graph Representation Learning Based on Multi-Or...
收藏 引用
Smart World Congress (SWC), IEEE
作者: Ling Wu Xinyu Li Yingjie Yang Kun Guo Qishan Zhang College of Computer and Data Science Fuzhou University Fuzhou China Fujian Key Laboratory of Network Computing and Intelligent Information Processing China School of Computer Science and Informatics De Montfort University Leicester England College of Economics and Humanities Shanghai International Studies University Shanghai China
Real-world networks can be divided into homophilic and heterophilic graphs. Significantly, many nodes tend to be heterophilic in a homophilic graph. Graph representation learning in heterophilic graphs has attracted c... 详细信息
来源: 评论
Sle Diagnosis Research Based on Sers Combined with a Multi-Modal Fusion Method
SSRN
收藏 引用
SSRN 2023年
作者: Huang, Yuhao Chen, Chen Chang, Chenjie Cheng, Zhiyuan Liu, Yang Chen, Cheng Lv, Xiaoyi College of Software Xinjiang University Xinjiang Urumqi830046 China College of Information Science and Engineering Xinjiang University Urumqi830046 China Key Laboratory of Signal Detection and Processing Xinjiang University Urumqi830046 China Xinjiang Cloud Computing Application Laboratory Xinjiang Cloud Computing Engineering Technology Research Center Karamay834000 China
As artificial intelligence technology gains widespread adoption in biomedicine, the exploration of integrating biofluidic Raman spectroscopy for enhanced disease diagnosis opens up new prospects for the practical appl... 详细信息
来源: 评论
Scalable Graph Compressed Convolutions
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Junshu Wang, Shuhui Yang, Chenxue Huang, Qingming The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China The Agricultural Information Institute China Academy of Agricultural Sciences Beijing100081 China The School of Computer Science and Technology University of Chinese Academy of Sciences Beijing101408 China Peng Cheng Laboratory Shenzhen518066 China
Designing effective graph neural networks (GNNs) with message passing has two fundamental challenges, i.e., determining optimal message-passing pathways and designing local aggregators. Previous methods of designing o... 详细信息
来源: 评论