咨询与建议

限定检索结果

文献类型

  • 2,259 篇 会议
  • 1,452 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 3,716 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,326 篇 工学
    • 1,484 篇 计算机科学与技术...
    • 1,220 篇 软件工程
    • 588 篇 信息与通信工程
    • 378 篇 电子科学与技术(可...
    • 310 篇 电气工程
    • 280 篇 控制科学与工程
    • 189 篇 生物工程
    • 178 篇 机械工程
    • 173 篇 光学工程
    • 126 篇 生物医学工程(可授...
    • 121 篇 化学工程与技术
    • 113 篇 仪器科学与技术
    • 83 篇 动力工程及工程热...
    • 68 篇 材料科学与工程(可...
    • 55 篇 网络空间安全
    • 51 篇 建筑学
    • 45 篇 土木工程
  • 1,410 篇 理学
    • 905 篇 数学
    • 410 篇 物理学
    • 226 篇 生物学
    • 216 篇 统计学(可授理学、...
    • 130 篇 化学
    • 123 篇 系统科学
  • 561 篇 管理学
    • 296 篇 管理科学与工程(可...
    • 282 篇 图书情报与档案管...
    • 99 篇 工商管理
  • 94 篇 医学
    • 78 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 59 篇 法学
    • 46 篇 社会学
  • 48 篇 农学
  • 33 篇 经济学
  • 23 篇 教育学
  • 11 篇 军事学
  • 9 篇 哲学
  • 8 篇 文学
  • 8 篇 艺术学

主题

  • 142 篇 feature extracti...
  • 104 篇 semantics
  • 88 篇 training
  • 78 篇 laboratories
  • 68 篇 information proc...
  • 66 篇 computational mo...
  • 64 篇 image segmentati...
  • 56 篇 optimization
  • 53 篇 data mining
  • 53 篇 computers
  • 50 篇 face recognition
  • 49 篇 signal processin...
  • 49 篇 accuracy
  • 48 篇 visualization
  • 48 篇 robustness
  • 47 篇 signal processin...
  • 43 篇 deep learning
  • 42 篇 support vector m...
  • 42 篇 machine learning
  • 42 篇 humans

机构

  • 431 篇 key laboratory o...
  • 222 篇 university of ch...
  • 207 篇 key laboratory o...
  • 102 篇 key laboratory o...
  • 83 篇 key laboratory o...
  • 67 篇 school of comput...
  • 65 篇 peng cheng labor...
  • 63 篇 key laboratory o...
  • 63 篇 college of compu...
  • 54 篇 key laboratory o...
  • 53 篇 anhui university...
  • 53 篇 college of mathe...
  • 48 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 46 篇 hunan provincial...
  • 46 篇 the key laborato...
  • 44 篇 school of comput...
  • 44 篇 graduate univers...
  • 42 篇 college of infor...
  • 40 篇 fujian provincia...

作者

  • 90 篇 zhongzhi shi
  • 83 篇 huang zhixiang
  • 81 篇 shi zhongzhi
  • 74 篇 li yingsong
  • 73 篇 shiguang shan
  • 73 篇 xilin chen
  • 70 篇 zhixiang huang
  • 62 篇 liu qun
  • 62 篇 huang qingming
  • 58 篇 yingsong li
  • 56 篇 xianliang wu
  • 53 篇 shi minjia
  • 42 篇 xu qianqian
  • 41 篇 wu xianliang
  • 39 篇 wu xian-liang
  • 38 篇 feng yang
  • 36 篇 luo bin
  • 33 篇 he qing
  • 33 篇 bin luo
  • 32 篇 wen gao

语言

  • 3,287 篇 英文
  • 344 篇 其他
  • 102 篇 中文
检索条件"机构=The Key Laboratory of Intelligent Computing and Signal Processing"
3716 条 记 录,以下是2671-2680 订阅
排序:
Multiple kernel learning method using MRMR criterion and kernel alignment
Multiple kernel learning method using MRMR criterion and ker...
收藏 引用
20th International Conference on Neural Information processing, ICONIP 2013
作者: Wu, Peng Duan, Fuqing Guo, Ping Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing 100875 China Shandong Provincial Key Laboratory of Network Based Intelligent Computing University of Jinan Jinan 250022 China
Multiple kernel learning (MKL) is a widely used kernel learning method, but how to select kernel is lack of theoretical guidance. The performance of MKL is depend on the users' experience, which is difficult to ch... 详细信息
来源: 评论
Concept learning for cross-domain text classification: A general probabilistic framework
Concept learning for cross-domain text classification: A gen...
收藏 引用
23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
作者: Zhuang, Fuzhen Luo, Ping Yin, Peifeng He, Qing Shi, Zhongzhi Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China Hewlett Packard Labs China Pennsylvania State University United States
Cross-domain learning targets at leveraging the knowledge from source domains to train accurate models for the test data from target domains with different but related data distributions. To tackle the challenge of da... 详细信息
来源: 评论
A motivational system for mind model CAM
A motivational system for mind model CAM
收藏 引用
2013 AAAI Fall Symposium
作者: Shi, Zhongzhi Zhang, Jianhua Yue, Jinpeng Qi, Baoyuan Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China University of Chinese Academy of Sciences Beijing 100049 China
A motivation model is proposed in the paper. Based on the model we develop a motivational system for mind model CAM. Through the application in automatic navigation of animal robots shows the motivation system is usef... 详细信息
来源: 评论
Shared structure learning for multiple tasks with multiple views
Shared structure learning for multiple tasks with multiple v...
收藏 引用
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2013
作者: Jin, Xin Zhuang, Fuzhen Wang, Shuhui He, Qing Shi, Zhongzhi Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China University of Chinese Academy of Sciences Beijing 100049 China
Real-world problems usually exhibit dual-heterogeneity, i.e., every task in the problem has features from multiple views, and multiple tasks are related with each other through one or more shared views. To solve these... 详细信息
来源: 评论
Phrase filtering for content words in hierarchical phrase-based model
Phrase filtering for content words in hierarchical phrase-ba...
收藏 引用
14th Workshop on Chinese Lexical Semantics, CLSW 2013
作者: Wang, Xing Xie, Jun Song, Linfeng Lv, Yajuan Yao, Jianmin School of Computer Science AndTechnology Soochow University Suzhou China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China
When hierarchical phrase-based statistical machine translation systems are used for language translation, sometimes the translations' content words were lost: source-side content words is empty when translated int... 详细信息
来源: 评论
Attribute reduction based on approximation dependency degree
收藏 引用
Journal of Computers (Finland) 2013年 第4期8卷 920-928页
作者: Li, Min Deng, ShaoBo Feng, Shengzhong Fan, Jianping NanChang Institute of Technology Nanchang Jiangxi 330099 China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China Key laboratory of intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100080 China
Attribute reduction is one of the core research content of Rough sets theory. Many existing algorithms mainly are aimed at the reduction of consistency decision table, and very little work has been done for attribute ... 详细信息
来源: 评论
Semantic separator learning and its applications in unsupervised Chinese text parsing
收藏 引用
Frontiers of Computer Science 2013年 第1期7卷 55-68页
作者: Yuming WU Xiaodong LUO Zhen YANG Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China Graduate University of the Chinese Academy of Sciences Beijing 100049 China China Telecom Corporation Limited Shanghai Branch Shanghai 200120 China Shanghai Research Institute of China Telecom Corporation Limited Shanghai 200120 China
Grammar learning has been a bottleneck problem for a long time. In this paper, we propose a method of seman- tic separator learning, a special case of grammar learning. The method is based on the hypothesis that some ... 详细信息
来源: 评论
Time evolving graphical password for securing mobile devices  13
Time evolving graphical password for securing mobile devices
收藏 引用
8th ACM SIGSAC Symposium on Information, Computer and Communications Security, ASIA CCS 2013
作者: Wang, Zhan Jing, Jiwu Li, Liang State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing 100093 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China
Increasingly widespread use of mobile devices for processing monetary transactions and accessing business secrets has created a great demand on securing mobile devices. Poorly designed authentication mechanisms (e.g.,... 详细信息
来源: 评论
Study on the Gain Material with Four Energy Level Model Using FDTD Method
Study on the Gain Material with Four Energy Level Model Usin...
收藏 引用
The International Symposium on Photonics and Optoelectronics(SOPO 2013)
作者: Hui Xue Zhixiang Huang Xianliang Wu Key Laboratory of Intelligent Computing and Signal Processing Anhui University Department of Physics and Electronic Engineering Hefei Normal University
A faster numerical method based on FDTD for the four energy level atomic system is present here. The initial conditions for the electrons of each level are achieving while the fields are in steady state. Polarization ... 详细信息
来源: 评论
Refining image annotation by integrating PLSA with random walk model
Refining image annotation by integrating PLSA with random wa...
收藏 引用
19th International Conference on Advances in Multimedia Modeling, MMM 2013
作者: Tian, Dongping Zhao, Xiaofei Shi, Zhongzhi Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China Graduate University of the Chinese Academy of Sciences Beijing 100049 China
In this paper, we present a new method for refining image annotation by integrating probabilistic latent semantic analysis (PLSA) with random walk (RW) model. First, we construct a PLSA model with asymmetric modalitie... 详细信息
来源: 评论