咨询与建议

限定检索结果

文献类型

  • 457 篇 会议
  • 390 篇 期刊文献

馆藏范围

  • 847 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 569 篇 工学
    • 376 篇 计算机科学与技术...
    • 333 篇 软件工程
    • 211 篇 生物医学工程(可授...
    • 147 篇 光学工程
    • 126 篇 信息与通信工程
    • 123 篇 生物工程
    • 71 篇 电气工程
    • 61 篇 电子科学与技术(可...
    • 55 篇 控制科学与工程
    • 53 篇 机械工程
    • 33 篇 仪器科学与技术
    • 33 篇 化学工程与技术
    • 15 篇 动力工程及工程热...
    • 14 篇 材料科学与工程(可...
    • 14 篇 土木工程
    • 14 篇 交通运输工程
  • 343 篇 理学
    • 163 篇 数学
    • 141 篇 生物学
    • 109 篇 物理学
    • 47 篇 统计学(可授理学、...
    • 31 篇 化学
    • 14 篇 系统科学
  • 165 篇 医学
    • 146 篇 临床医学
    • 118 篇 基础医学(可授医学...
    • 91 篇 药学(可授医学、理...
    • 25 篇 公共卫生与预防医...
  • 141 篇 管理学
    • 73 篇 图书情报与档案管...
    • 72 篇 管理科学与工程(可...
    • 27 篇 工商管理
  • 24 篇 农学
    • 17 篇 作物学
  • 7 篇 经济学
  • 6 篇 法学
  • 6 篇 教育学
  • 3 篇 文学
  • 2 篇 艺术学

主题

  • 48 篇 image segmentati...
  • 33 篇 deep learning
  • 27 篇 semantics
  • 25 篇 feature extracti...
  • 20 篇 semantic segment...
  • 19 篇 magnetic resonan...
  • 19 篇 convolution
  • 19 篇 biomedical imagi...
  • 16 篇 training
  • 14 篇 computed tomogra...
  • 13 篇 three-dimensiona...
  • 13 篇 predictive model...
  • 12 篇 shape
  • 12 篇 image registrati...
  • 11 篇 educational inst...
  • 10 篇 transformers
  • 10 篇 signal processin...
  • 10 篇 data mining
  • 10 篇 computational mo...
  • 10 篇 machine learning

机构

  • 63 篇 key laboratory o...
  • 55 篇 school of comput...
  • 41 篇 key laboratory o...
  • 36 篇 college of infor...
  • 31 篇 shanghai key lab...
  • 29 篇 college of medic...
  • 27 篇 key laboratory o...
  • 26 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 22 篇 school of inform...
  • 22 篇 key laboratory o...
  • 17 篇 university of ch...
  • 17 篇 digital medical ...
  • 15 篇 college of compu...
  • 15 篇 key laboratory o...
  • 15 篇 key laboratory o...
  • 14 篇 national frontie...
  • 14 篇 sino-dutch biome...
  • 13 篇 software college...
  • 13 篇 baidu inc.

作者

  • 41 篇 yang jinzhu
  • 37 篇 jinzhu yang
  • 26 篇 dazhe zhao
  • 24 篇 cao peng
  • 23 篇 wang lihui
  • 20 篇 zhao dazhe
  • 18 篇 tan wenjun
  • 15 篇 fu chong
  • 15 篇 peng cao
  • 14 篇 wenjun tan
  • 13 篇 ge yu
  • 13 篇 li chen
  • 13 篇 zaiane osmar r.
  • 13 篇 lisheng xu
  • 12 篇 zhu yuemin
  • 12 篇 wei li
  • 12 篇 wang manning
  • 12 篇 yu yao
  • 12 篇 hu kai
  • 11 篇 yu ge

语言

  • 733 篇 英文
  • 100 篇 其他
  • 20 篇 中文
检索条件"机构=The Key Laboratory of Intelligent Computing in Medical Image"
847 条 记 录,以下是121-130 订阅
排序:
Label Correlation Guided Feature Selection for Multi-label Learning  9th
Label Correlation Guided Feature Selection for Multi-label ...
收藏 引用
19th International Conference on Advanced Data Mining and Applications, ADMA 2023
作者: Zhang, Kai Liang, Wei Cao, Peng Yang, Jinzhu Li, Weiping Zaiane, Osmar R. Computer Science and Engineering Northeastern University Shenyang China Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education Northeastern University Shenyang China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang110819 China School of Software and Microelectronics Peking University Beijing China Alberta Machine Intelligence Institute University of Alberta EdmontonAB Canada
Multi-label learning has received much attention due to its wide range of application domains. Multi-label data often has high-dimensional features, which brings more challenges to classification algorithms. Feature s... 详细信息
来源: 评论
A Pulmonary Artery-Vein Separation algorithm based on the relationship between sub-trees  2020
A Pulmonary Artery-Vein Separation algorithm based on the re...
收藏 引用
The Fourth International Symposium on image computing and Digital Medicine
作者: Wenjun Tan Key Laboratory of Intelligent Computing in Medical Image Ministry of Education China
This article presents a combined algorithm of pulmonary artery-vein (A/V) separation considering both global and local information, including: the transformation of geometric graph, sub-tree separation, and A/V classi... 详细信息
来源: 评论
Joint Hand-Object 3D Reconstruction From Monocular image Based On Fused Visual Cues And Pose Prior
收藏 引用
IEEE Transactions on Consumer Electronics 2025年
作者: Liu, Yawen Zhang, Xinkang Chen, Xinrong Fudan University Academy for Engineering and Technology 200433 China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention 200032 China
Joint reconstruction of hands and manipulated objects from a monocular image is important perception technique which has recently achieved impressive progress. Compared to reconstructing hands and objects from tempora... 详细信息
来源: 评论
Rethinking Multiple Instance Learning: Developing an Instance-Level Classifier via Weakly-Supervised Self-Training
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Yingfan Luo, Xiaoyuan Yuan, Mingzhi Chen, Xinrong Wang, Manning The Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China The Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Multiple instance learning (MIL) problem is currently solved from either bag-classification or instance-classification perspective, both of which ignore important information contained in some instances and result in ... 详细信息
来源: 评论
RKSeg+: make full use of Runge–Kutta methods in medical image segmentation
收藏 引用
Multimedia Systems 2024年 第2期30卷 65-65页
作者: Zhu, Mai Fu, Chong Wang, Xingwei School of Computer Science and Engineering Northeastern University Shenyang110819 China Engineering Research Center of Security Technology of Complex Network System Ministry of Education Shenyang110819 China Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Northeastern University Shenyang110819 China
The dynamical system perspective has been used to build efficient image classification networks and semantic segmentation networks. Furthermore, the Runge–Kutta (RK) methods are powerful tools for building networks f... 详细信息
来源: 评论
Ddfp: Data-Dependent Frequency Prompt for Source Free Domain Adaptation of medical image Segmentation
SSRN
收藏 引用
SSRN 2024年
作者: Yin, Siqi Liu, Shaolei Wang, Manning Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Domain adaptation aims to address model performance degradation problem under domain gap. In the typical setting of unsupervised domain adaptation, labeled data from source domain and unlabeled data from target domain... 详细信息
来源: 评论
Rethinking Barely-Supervised Volumetric medical image Segmentation from an Unsupervised Domain Adaptation Perspective
arXiv
收藏 引用
arXiv 2024年
作者: Shen, Zhiqiang Cao, Peng Su, Junming Yang, Jinzhu Zaiane, Osmar R. School of Computer Science and Engineering Northeastern University Shenyang110819 China Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Northeastern University Shenyang110819 China Alberta Machine Intelligence Institute University of Alberta Edmonton Canada
This paper investigates an extremely challenging problem: barely-supervised volumetric medical image segmentation (BSS). A BSS training dataset consists of two parts: 1) a barely-annotated labeled set, where each labe... 详细信息
来源: 评论
Space Engage: Collaborative Space Supervision for Contrastive-based Semi-Supervised Semantic Segmentation
Space Engage: Collaborative Space Supervision for Contrastiv...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Changqi Wang Haoyu Xie Yuhui Yuan Chong Fu Xiangyu Yue School of Computer Science and Engineering Northeastern University Shenyang China Microsoft Research Asia Key Laboratory of Intelligent Computing in Medical Image Ministry of Education NEU China The Chinese University of Hong Kong
Semi-Supervised Semantic Segmentation (S4) aims to train a segmentation model with limited labeled images and a substantial volume of unlabeled images. To improve the robustness of representations, powerful methods in...
来源: 评论
GALOPA: graph transport learning with optimal plan alignment  23
GALOPA: graph transport learning with optimal plan alignment
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Yejiang Wang Yuhai Zhao Zhengkui Wang Ling Li School of Computer Science and Engineering Northeastern University China and Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education Northeastern University China InfoComm Technology Cluster Singapore Institute of Technology Singapore
Self-supervised learning on graphs aims to learn graph representations in an unsupervised manner. While graph contrastive learning (GCL - relying on graph augmentation for creating perturbation views of anchor graphs ...
来源: 评论
Review on application progress of federated learning model and security hazard protection
收藏 引用
Digital Communications and Networks 2023年 第1期9卷 146-158页
作者: Aimin Yang Zezhong Ma Chunying Zhang Yang Han Zhibin Hu Wei Zhang Xiangdong Huang Yafeng Wu Hebei Engineering Research Center for the Intelligentization of Iron Ore Optimization and Ironmaking Raw Materials Preparation Processes North China University of Science and TechnologyTangshanHebeiChina Hebei Key Laboratory of Data Science and Application North China University of Science and TechnologyTangshanHebeiChina The Key Laboratory of Engineering Computing in Tangshan City North China University of Science and TechnologyTangshanHebeiChina Tangshan Intelligent Industry and Image Processing Technology Innovation Center North China University of Science and TechnologyTangshanHebeiChina College of Science North China University of Science and TechnologyTangshanHebeiChina College of Artificial Intelligence North China University of Science and TechnologyTangshanHebeiChina
Federated learning is a new type of distributed learning framework that allows multiple participants to share training results without revealing their data *** data privacy becomes more important,it becomes difficult ... 详细信息
来源: 评论