咨询与建议

限定检索结果

文献类型

  • 457 篇 会议
  • 389 篇 期刊文献

馆藏范围

  • 846 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 569 篇 工学
    • 376 篇 计算机科学与技术...
    • 334 篇 软件工程
    • 211 篇 生物医学工程(可授...
    • 147 篇 光学工程
    • 127 篇 信息与通信工程
    • 123 篇 生物工程
    • 73 篇 电气工程
    • 62 篇 电子科学与技术(可...
    • 55 篇 控制科学与工程
    • 53 篇 机械工程
    • 33 篇 仪器科学与技术
    • 33 篇 化学工程与技术
    • 15 篇 动力工程及工程热...
    • 14 篇 材料科学与工程(可...
    • 14 篇 土木工程
    • 14 篇 交通运输工程
  • 342 篇 理学
    • 163 篇 数学
    • 141 篇 生物学
    • 108 篇 物理学
    • 47 篇 统计学(可授理学、...
    • 31 篇 化学
    • 14 篇 系统科学
  • 165 篇 医学
    • 147 篇 临床医学
    • 117 篇 基础医学(可授医学...
    • 90 篇 药学(可授医学、理...
    • 25 篇 公共卫生与预防医...
  • 142 篇 管理学
    • 73 篇 管理科学与工程(可...
    • 73 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 24 篇 农学
    • 17 篇 作物学
  • 7 篇 经济学
  • 6 篇 法学
  • 6 篇 教育学
  • 3 篇 文学
  • 2 篇 艺术学

主题

  • 49 篇 image segmentati...
  • 33 篇 deep learning
  • 27 篇 semantics
  • 26 篇 feature extracti...
  • 21 篇 semantic segment...
  • 21 篇 magnetic resonan...
  • 20 篇 biomedical imagi...
  • 19 篇 convolution
  • 17 篇 training
  • 15 篇 computed tomogra...
  • 13 篇 three-dimensiona...
  • 13 篇 predictive model...
  • 12 篇 shape
  • 12 篇 image registrati...
  • 11 篇 educational inst...
  • 10 篇 transformers
  • 10 篇 signal processin...
  • 10 篇 data mining
  • 10 篇 computational mo...
  • 10 篇 correlation

机构

  • 62 篇 key laboratory o...
  • 54 篇 school of comput...
  • 42 篇 key laboratory o...
  • 36 篇 college of infor...
  • 33 篇 shanghai key lab...
  • 30 篇 college of medic...
  • 27 篇 key laboratory o...
  • 26 篇 key laboratory o...
  • 24 篇 key laboratory o...
  • 22 篇 school of inform...
  • 22 篇 key laboratory o...
  • 18 篇 digital medical ...
  • 17 篇 university of ch...
  • 15 篇 key laboratory o...
  • 15 篇 key laboratory o...
  • 14 篇 college of compu...
  • 14 篇 sino-dutch biome...
  • 13 篇 national frontie...
  • 13 篇 software college...
  • 13 篇 baidu inc.

作者

  • 42 篇 yang jinzhu
  • 36 篇 jinzhu yang
  • 26 篇 dazhe zhao
  • 24 篇 cao peng
  • 23 篇 wang lihui
  • 20 篇 zhao dazhe
  • 18 篇 tan wenjun
  • 15 篇 fu chong
  • 15 篇 peng cao
  • 14 篇 li chen
  • 14 篇 wenjun tan
  • 14 篇 wang manning
  • 14 篇 lisheng xu
  • 13 篇 ge yu
  • 13 篇 zaiane osmar r.
  • 12 篇 zhu yuemin
  • 12 篇 wei li
  • 12 篇 yu yao
  • 12 篇 hu kai
  • 11 篇 yu ge

语言

  • 780 篇 英文
  • 50 篇 其他
  • 22 篇 中文
检索条件"机构=The Key Laboratory of Intelligent Computing in Medical Image"
846 条 记 录,以下是131-140 订阅
排序:
Feature Selection for Microarray Data via Community Detection Fusing Multiple Gene Relation Networks Information
Feature Selection for Microarray Data via Community Detectio...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Shoujia Zhang Wei Li Weidong Xie Linjie Wang College of Computer Science and Engineering Northeastern University Shenyang Chain Key Laboratory of Intelligent Computing in Medical Image Northeastern University Shenyang Chain
In recent decades, the rapid development of gene sequencing and computer technology has increased the growth of high-dimensional microarray data. Some machine learning methods have been successfully applied to it to h... 详细信息
来源: 评论
TransCoop: Cooperation of Transformers and CNNs for Camouflaged Object Segmentation
TransCoop: Cooperation of Transformers and CNNs for Camoufla...
收藏 引用
2022 IEEE International Conference on Multimedia and Expo, ICME 2022
作者: Wu, Fucai Li, Xuanya Zhang, Yuan Hu, Kai Xiangtan University Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan411105 China Baidu Inc. Beijing100085 China Xiangnan University Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province Chenzhou423000 China
Camouflaged object segmentation (COS) is a challenging task due to the existence of high intrinsic similarities between the object and background. To overcome this challenge, we pro-pose a new framework, called TransC... 详细信息
来源: 评论
Pseudo Multi-Source Domain Extension and Selective Pseudo-Labeling for Unsupervised Domain Adaptive medical image Segmentation
Pseudo Multi-Source Domain Extension and Selective Pseudo-La...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Xiaokang Liu Zhiqiang Wang Kai Hu Xieping Gao Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan University Xiangtan China College of Medical Imaging Laboratory and Rehabilitation Xiangnan University Chenzhou China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China
Unsupervised domain adaptation (UDA) attracts extra attention in medical image processing because no additional labels are required when adapting to different distributions. In this work, we propose a novel unsupervis... 详细信息
来源: 评论
Source-Free Unsupervised Domain Adaptation Fundus image Segmentation via Entropy Optimization and Anatomical Priors
收藏 引用
Procedia Computer Science 2024年 250卷 182-187页
作者: Yijia Chen Jiapeng Li Haoze Yu Lin Qi Yongchun Li College of Medicine and Biological Information Engineering Northeastern University Shenyang 110169 China Engineering Research Center of Medical Imaging and Intelligent Analysis Ministry of Education Shenyang 110169 China Key Laboratory of Medical Image Computing Ministry of Education Northeastern University Shenyang 110169 China Shenyang Contain Electronic Technology Co. Ltd. Shenyang 110167 China
This research focuses on fundus image segmentation within a source-free domain adaptation framework, where the availability of source images during the adaptation phase is limited due to privacy concerns. Although Sou... 详细信息
来源: 评论
BECNN: Bias Field Estimation CNN Trained with a Dual Route Implicit Supervised Learning Strategy
BECNN: Bias Field Estimation CNN Trained with a Dual Route I...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Shuaizheng Chen Chaolu Feng Wei Li Jinzhu Yang Dazhe Zhao School of Computer Science And Engineering Northeastern University Shenyang China Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Northeastern University Shenyang China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang China
Bias fields adversely affect various automatic analysis technologies. Therefore, bias field correction is essential. However, deep learning based methods encounter challenges in obtaining ground truth. Although existi... 详细信息
来源: 评论
Virtually-Federated Scheduling of Parallel Real-Time Tasks  42
Virtually-Federated Scheduling of Parallel Real-Time Tasks
收藏 引用
42nd IEEE Real-Time Systems Symposium, RTSS 2021
作者: Jiang, Xu Guan, Nan Liang, Haochun Tang, Yue Qiao, Lei Yi, Wang Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Northeastern University China City University of Hong Kong Hong Kong Beijing Institute of Control Engineering China Uppsala University Sweden
Federated scheduling is a promising approach to schedule parallel real-time tasks, where each task exclusively executes on a set of dedicated processors. However, federated scheduling suffers significant resource wast... 详细信息
来源: 评论
Glo-net: A dual task branch based neural network for multi-class glomeruli segmentation
收藏 引用
Computers in Biology and Medicine 2025年 186卷 109670-109670页
作者: Wang, Xiangxue Zhang, Jingkai Xu, Yuemei Huang, Yang Ming, Wenlong Jiao, Yiping Liu, Bicheng Fan, Xiangshan Xu, Jun Jiangsu Key Laboratory of Intelligent Medical Image Computing School of Future Technology Nanjing University of Information Science and Technology Nanjing210044 China Department of Pathology Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing210008 China Institute of Nephrology Zhong Da Hospital Southeast University School of Medicine 210009 China
Accurate segmentation and classification of glomeruli are fundamental to histopathology slide analysis in renal pathology, which helps to characterize individual kidney disease. Accurate segmentation of glomeruli of d... 详细信息
来源: 评论
MMBDE: A Two-stage Hybrid Feature Selection Method from Microarray Data
MMBDE: A Two-stage Hybrid Feature Selection Method from Micr...
收藏 引用
2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
作者: Xie, Weidong Chi, Yuhuan Wang, Linjie Yu, Kun Li, Wei Northeastern University Computer Science and Engineering Shenyang China Northeastern University College of Medicine and Bioinformation Engineering Shenyang China Northeastern University Key Laboratory of Intelligent Computing in Medical Image Shenyang China
The discovery of diagnostically significant genes from microarray data is essential for disease diagnosis and drug research. However, the difficulty of analyzing microarray data comes from its high dimensionality and ... 详细信息
来源: 评论
Layph: Making Change Propagation Constraint in Incremental Graph Processing by Layering Graph
arXiv
收藏 引用
arXiv 2023年
作者: Yu, Song Gong, Shufeng Zhang, Yanfeng Yu, Wenyuan Yin, Qiang Tian, Chao Tao, Qian Yan, Yongze Yu, Ge Zhou, Jingren Northeastern University United States Alibaba Group China Shanghai Jiao Tong University China Chinese Academy of Sciences China Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education Northeastern University China
Real-world graphs are constantly evolving, which demands updates of the previous analysis results to accommodate graph changes. By using the memoized previous computation state, incremental graph computation can reduc... 详细信息
来源: 评论
Dual Attention Poser: Dual Path Body Tracking Based on Attention
Dual Attention Poser: Dual Path Body Tracking Based on Atten...
收藏 引用
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
作者: Xinhan Di Xiaokun Dai Xinkang Zhang Xinrong Chen Deepearthgo Academy for Engineering&Technology Fudan Universiry Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention Fudan University
Currently, mixed reality head-mounted displays tracking the full body of users is an important human-computer interaction mode through the pose of the head and the hands. Unfortunately, users’ virtual representation ...
来源: 评论