咨询与建议

限定检索结果

文献类型

  • 457 篇 会议
  • 389 篇 期刊文献

馆藏范围

  • 846 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 569 篇 工学
    • 376 篇 计算机科学与技术...
    • 334 篇 软件工程
    • 211 篇 生物医学工程(可授...
    • 147 篇 光学工程
    • 127 篇 信息与通信工程
    • 123 篇 生物工程
    • 73 篇 电气工程
    • 62 篇 电子科学与技术(可...
    • 55 篇 控制科学与工程
    • 53 篇 机械工程
    • 33 篇 仪器科学与技术
    • 33 篇 化学工程与技术
    • 15 篇 动力工程及工程热...
    • 14 篇 材料科学与工程(可...
    • 14 篇 土木工程
    • 14 篇 交通运输工程
  • 342 篇 理学
    • 163 篇 数学
    • 141 篇 生物学
    • 108 篇 物理学
    • 47 篇 统计学(可授理学、...
    • 31 篇 化学
    • 14 篇 系统科学
  • 165 篇 医学
    • 147 篇 临床医学
    • 117 篇 基础医学(可授医学...
    • 90 篇 药学(可授医学、理...
    • 25 篇 公共卫生与预防医...
  • 142 篇 管理学
    • 73 篇 管理科学与工程(可...
    • 73 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 24 篇 农学
    • 17 篇 作物学
  • 7 篇 经济学
  • 6 篇 法学
  • 6 篇 教育学
  • 3 篇 文学
  • 2 篇 艺术学

主题

  • 49 篇 image segmentati...
  • 33 篇 deep learning
  • 27 篇 semantics
  • 26 篇 feature extracti...
  • 21 篇 semantic segment...
  • 21 篇 magnetic resonan...
  • 20 篇 biomedical imagi...
  • 19 篇 convolution
  • 17 篇 training
  • 15 篇 computed tomogra...
  • 13 篇 three-dimensiona...
  • 13 篇 predictive model...
  • 12 篇 shape
  • 12 篇 image registrati...
  • 11 篇 educational inst...
  • 10 篇 transformers
  • 10 篇 signal processin...
  • 10 篇 data mining
  • 10 篇 computational mo...
  • 10 篇 correlation

机构

  • 62 篇 key laboratory o...
  • 54 篇 school of comput...
  • 42 篇 key laboratory o...
  • 36 篇 college of infor...
  • 33 篇 shanghai key lab...
  • 30 篇 college of medic...
  • 27 篇 key laboratory o...
  • 26 篇 key laboratory o...
  • 24 篇 key laboratory o...
  • 22 篇 school of inform...
  • 22 篇 key laboratory o...
  • 18 篇 digital medical ...
  • 17 篇 university of ch...
  • 15 篇 key laboratory o...
  • 15 篇 key laboratory o...
  • 14 篇 college of compu...
  • 14 篇 sino-dutch biome...
  • 13 篇 national frontie...
  • 13 篇 software college...
  • 13 篇 baidu inc.

作者

  • 42 篇 yang jinzhu
  • 36 篇 jinzhu yang
  • 26 篇 dazhe zhao
  • 24 篇 cao peng
  • 23 篇 wang lihui
  • 20 篇 zhao dazhe
  • 18 篇 tan wenjun
  • 15 篇 fu chong
  • 15 篇 peng cao
  • 14 篇 li chen
  • 14 篇 wenjun tan
  • 14 篇 wang manning
  • 14 篇 lisheng xu
  • 13 篇 ge yu
  • 13 篇 zaiane osmar r.
  • 12 篇 zhu yuemin
  • 12 篇 wei li
  • 12 篇 yu yao
  • 12 篇 hu kai
  • 11 篇 yu ge

语言

  • 780 篇 英文
  • 50 篇 其他
  • 22 篇 中文
检索条件"机构=The Key Laboratory of Intelligent Computing in Medical Image"
846 条 记 录,以下是201-210 订阅
排序:
M3YOLOv5: Feature enhanced YOLOv5 model for mandibular fracture detection
收藏 引用
Computers in Biology and Medicine 2024年 173卷 108291-108291页
作者: Zhou, Tao Wang, Hongwei Du, Yuhu Liu, Fengzhen Guo, Yujie Lu, Huiling School of Computer Science and Engineering North Minzu University Yinchuan750021 China School of Medical Information and Engineering Ningxia Medical University Yinchuan750004 China Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission North Minzu University Yinchuan750021 China
Background: It is very important to detect mandibular fracture region. However, the size of mandibular fracture region is different due to different anatomical positions, different sites and different degrees of force... 详细信息
来源: 评论
Deformable registration framework for glioma images with absent correspondence based on auxiliary-image-aided intensity-consistency constraint
Deformable registration framework for glioma images with abs...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Kun Tang Lihui Wang Menglong Yang Jingwen Xu Xinyu Cheng Jian Zhang Yuemin Zhu Hongjiang Wei Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province Engineering Research Center of Text Computing & Cognitive Intelligence Ministry of Education State Key Laboratory of Public Big Data College of Computer Science and Technology Guiyang China INSA Lyon CNRS Inserm Univ Lyon Lyon France School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
Considering the tumor aggressive nature and the significant changes in anatomical structure, aligning the preoperative and follow up scans of glioma patients remains a challenge due to the presence of regions with abs... 详细信息
来源: 评论
Tumor State-Space Network for High and Low Grade Glioma Classification
Tumor State-Space Network for High and Low Grade Glioma Clas...
收藏 引用
International Conference on Signal Processing Proceedings (ICSP)
作者: Qijian Chen Lihui Wang Zeyu Deng Li Wang Chen Ye YueMin Zhu Engineering Research Center of Text Computing Ministry of Education Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province State Key Laboratory of Public Big Data College of Computer Science and Technology Guizhou University Guiyang China INSA Lyon CNRS Inserm IRP Metislab CREATIS UMR5220 U1206 University Lyon Lyon France
Accurately predicting the grade of gliomas is crucial for choosing right treatment plans. While current methods using radiomics and deep learning can predict glioma grades effectively using magnetic resonance imaging ... 详细信息
来源: 评论
Finite Element Analysis for the Effects of the Descending Aorta Tortuosity on Aortic Hemodynamics
收藏 引用
Procedia Computer Science 2022年 209卷 148-156页
作者: Jiapeng Li Xuehao Cao Lisheng Xu Lin Qi College of Medicine and Biological Information Engineering Northeastern University Shenyang 110169 China Engineering Research Center of Medical Imaging and Intelligent Analysis Ministry of Education Shenyang 110169 China Key Laboratory of Medical Image Computing Ministry of Education Northeastern University Shenyang 110169 China
Large arteries in the human body, such as the aorta, are susceptible to atherosclerosis, and aortic hemodynamic analysis has been widely used to predict cardiovascular disease. In this study, we aim to explore whether... 详细信息
来源: 评论
A Hybrid Feature Selection Method Based on Binary Differential Evolution and Feature Subset Correlation for Microarray Data*
A Hybrid Feature Selection Method Based on Binary Differenti...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Weidong Xie Wei Li Yushan Fang Yuhuan Chi Kun Yu Computer Science and Engineering Northeastern University Shenyang China Key Laboratory of Intelligent Computing in Medical Image Northeastern University Shenyang China Medicine and Bioinformation Engineering Northeastern University Shenyang China
Obtaining essential genes from microarray data that can diagnose diseases can be very useful for researchers to understand diseases and develop drugs. However, the high computational cost due to the “curse of dimensi... 详细信息
来源: 评论
Segmentation of pulmonary vessels based on MSFM method  22
Segmentation of pulmonary vessels based on MSFM method
收藏 引用
22nd IEEE International Conference on E-Health Networking, Application and Services, HEALTHCOM 2020
作者: Wang, Xiaowei Cheng, Liying Huang, Danyang Gao, Xuanshuang Liang, Daili He, Liuye Zhang, Zhimei Li, Nan Tan, Wenjun School of Physical Science and Technology Shenyang Normal University Shenyang110034 China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Northeastern University Shenyang110189 China
Accurate segmentation of pulmonary blood vessels from CT images is of great significance for lung disease detection and segmentation of other lung structures. Manual segmentation is difficult to accurately segment vas... 详细信息
来源: 评论
Self-supervised Domain Adaptation for Breaking the Limits of Low-quality Fundus image Quality Enhancement
arXiv
收藏 引用
arXiv 2023年
作者: Hou, Qingshan Cao, Peng Wang, Jiaqi Liu, Xiaoli Yang, Jinzhu Zaiane, Osmar R. Computer Science and Engineering Northeastern University Shenyang China Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education Northeastern University Shenyang China DAMO Academy Alibaba Group China Alberta Machine Intelligence Institute University of Alberta EdmontonAB Canada
Retinal fundus images have been applied for the diagnosis and screening of eye diseases, such as Diabetic Retinopathy (DR) or Diabetic Macular Edema (DME). However, both low-quality fundus images and style inconsisten... 详细信息
来源: 评论
3D PET/CT Tumor Lesion Segmentation Based on nnUNet with GCN Refinement
arXiv
收藏 引用
arXiv 2023年
作者: Xue, Hengzhi Fang, Qingqing Yao, Yudong Teng, Yueyang College of Medicine and Biological Information Engineering Northeastern University Shenyang110004 China Department of Electrical and Computer Engineering Steven Institute of Technology HobokenNJ07102 United States Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Shenyang110169 China
Whole-body PET/CT scan is an important tool for diagnosing various malignancies (e.g., malignant melanoma, lymphoma, or lung cancer), and accurate segmentation of tumors is a key part for subsequent treatment. In rece... 详细信息
来源: 评论
BGRA-Net: Boundary-Guided and Region-Aware Convolutional Neural Network for the Segmentation of Breast Ultrasound images
BGRA-Net: Boundary-Guided and Region-Aware Convolutional Neu...
收藏 引用
2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
作者: Zhang, Xiang Li, Xuanya Hu, Kai Gao, Xieping Xiangtan University Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan411105 China Baidu Inc. Beijing100085 China Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province Xiangnan University Chenzhou423000 China Hunan Normal University Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Changsha410081 China
In this paper, we propose a novel convolutional neural network based on boundary-guided and region-aware (BGRA-Net) for breast tumor segmentation in ultrasound images. In particular, in the encoding stage, we propose ... 详细信息
来源: 评论
Self-supervised Noise2noise Method Utilizing Corrupted images with a Modular Network for LDCT Denoising
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Yuting He, Qiang Yao, Yudong Teng, Yueyang College of Medicine and Biological Information Engineering Northeastern University Shenyang110169 China Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Shenyang110169 China Department of Electrical and Computer Engineering Stevens Institute of Technology HobokenNJ07102 United States
Deep learning is a very promising technique for low-dose computed tomography (LDCT) image denoising. However, traditional deep learning methods require paired noisy and clean datasets, which are often difficult to obt... 详细信息
来源: 评论