咨询与建议

限定检索结果

文献类型

  • 1,901 篇 会议
  • 1,438 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 3,342 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,175 篇 工学
    • 1,512 篇 计算机科学与技术...
    • 1,313 篇 软件工程
    • 519 篇 信息与通信工程
    • 266 篇 控制科学与工程
    • 250 篇 生物工程
    • 190 篇 机械工程
    • 187 篇 电子科学与技术(可...
    • 186 篇 电气工程
    • 179 篇 光学工程
    • 163 篇 生物医学工程(可授...
    • 124 篇 化学工程与技术
    • 96 篇 仪器科学与技术
    • 65 篇 动力工程及工程热...
    • 59 篇 交通运输工程
    • 57 篇 建筑学
    • 49 篇 土木工程
    • 47 篇 材料科学与工程(可...
  • 1,220 篇 理学
    • 703 篇 数学
    • 309 篇 物理学
    • 295 篇 生物学
    • 205 篇 统计学(可授理学、...
    • 122 篇 化学
    • 94 篇 系统科学
  • 617 篇 管理学
    • 356 篇 图书情报与档案管...
    • 277 篇 管理科学与工程(可...
    • 90 篇 工商管理
  • 123 篇 医学
    • 102 篇 临床医学
    • 85 篇 基础医学(可授医学...
    • 55 篇 药学(可授医学、理...
  • 55 篇 法学
    • 45 篇 社会学
  • 50 篇 农学
  • 32 篇 经济学
  • 20 篇 教育学
  • 15 篇 艺术学
  • 10 篇 军事学
  • 9 篇 哲学
  • 7 篇 文学

主题

  • 154 篇 feature extracti...
  • 137 篇 semantics
  • 115 篇 training
  • 83 篇 information proc...
  • 71 篇 laboratories
  • 65 篇 deep learning
  • 64 篇 face recognition
  • 62 篇 computational mo...
  • 61 篇 object detection
  • 60 篇 computers
  • 54 篇 visualization
  • 54 篇 accuracy
  • 49 篇 data mining
  • 47 篇 humans
  • 46 篇 convolution
  • 44 篇 image segmentati...
  • 43 篇 data models
  • 41 篇 decoding
  • 41 篇 robustness
  • 39 篇 machine learning

机构

  • 434 篇 key laboratory o...
  • 315 篇 university of ch...
  • 83 篇 key laboratory o...
  • 73 篇 peng cheng labor...
  • 62 篇 key lab of intel...
  • 51 篇 key lab of intel...
  • 48 篇 key laboratory o...
  • 47 篇 fujian provincia...
  • 46 篇 jiangxi province...
  • 46 篇 graduate univers...
  • 45 篇 the key laborato...
  • 44 篇 key laboratory o...
  • 44 篇 chinese academy ...
  • 43 篇 school of comput...
  • 39 篇 key laboratory o...
  • 38 篇 graduate univers...
  • 36 篇 hubei province k...
  • 33 篇 institute of dig...
  • 33 篇 school of inform...
  • 33 篇 school of comput...

作者

  • 101 篇 zhongzhi shi
  • 96 篇 xilin chen
  • 92 篇 shiguang shan
  • 90 篇 shi zhongzhi
  • 80 篇 liu qun
  • 69 篇 huang qingming
  • 45 篇 qing he
  • 41 篇 he qing
  • 39 篇 li hua
  • 39 篇 zhang fuquan
  • 39 篇 feng yang
  • 38 篇 xu qianqian
  • 38 篇 wen gao
  • 36 篇 liu yang
  • 32 篇 cao juan
  • 31 篇 jiang shuqiang
  • 30 篇 zhuang fuzhen
  • 29 篇 chen xilin
  • 29 篇 gao wen
  • 29 篇 zhuge hai

语言

  • 3,156 篇 英文
  • 120 篇 其他
  • 73 篇 中文
检索条件"机构=The Key Laboratory of Intelligent Information Processing Institute of Computing Technology"
3342 条 记 录,以下是261-270 订阅
排序:
Suppress content shift: better diffusion features via off-the-shelf generation techniques  24
Suppress content shift: better diffusion features via off-th...
收藏 引用
Proceedings of the 38th International Conference on Neural information processing Systems
作者: Benyuan Meng Qianqian Xu Zitai Wang Zhiyong Yang Xiaochun Cao Qingming Huang Institute of Information Engineering CAS and School of Cyber Security University of Chinese Academy of Sciences Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS and Peng Cheng Laboratory Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS School of Computer Science and Tech. University of Chinese Academy of Sciences School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University School of Computer Science and Tech. University of Chinese Academy of Sciences and Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS and Key Laboratory of Big Data Mining and Knowledge Management CAS
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
来源: 评论
An Analysis on the Training Mode of Master Students in Artificial Intelligence Field for Electronic information Professional Degree—Take Hunan Normal University as an Example  8th
An Analysis on the Training Mode of Master Students in Artif...
收藏 引用
8th EAI International Conference on e-Learning, e-Education, and Online Training, eLEOT 2022
作者: Fu, Weina Liu, Shuai Institute of Information Science and Engineering Hunan Normal University Hunan Changsha410081 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Changsha410081 China
The ability of independent innovation in the field of artificial intelligence is a key element to occupy the commanding heights of future technology and talent competition in China. The cultivation of artificial intel... 详细信息
来源: 评论
Bi-Temporal Feature Relational Distillation for On-Board Lightweight Change Detection in Remote Sensing Imagery
收藏 引用
IEEE Transactions on Aerospace and Electronic Systems 2025年
作者: Wang, Guoqing Chen, He Li, Jie Wang, Jue Liu, Wenchao Chen, Liang Beijing Institute of Technology National Key Laboratory of Science and Technology on Space-Born Intelligent Information Processing Beijing100081 China Shanghai Aerospace Electronic Technology Institute Shanghai201109 China
Deep learning models for remote sensing change detection (CD) require significant resources, challenging real-time applications on spaceborne devices. Knowledge distillation (KD) technology is a potential solution tha... 详细信息
来源: 评论
Unifying Sum Rate Analysis and Optimization of RIS-Assisted MU-MIMO Networks: An Operator-Valued Free Probability Approach
Unifying Sum Rate Analysis and Optimization of RIS-Assisted ...
收藏 引用
IEEE International Conference on Communications in China (ICCC)
作者: Siqiang Wang Zhong Zheng Jing Guo Zesong Fei School of Information and Electronics Beijing Institute of Technology Beijing China National Key Laboratory of Science and Technology on Space-Born Intelligent Information Processing
The fundamental performance limit of wireless systems is closely related to the transmission strategy of the transceivers as well as the wireless channels. As the channels are determined by the intrinsic characteristi... 详细信息
来源: 评论
Integrating Multi-scale Contextualized information for Byte-based Neural Machine Translation
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Langlin Feng, Yang Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China Key Laboratory of AI Safety Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Subword tokenization is a common method for vocabulary building in Neural Machine Translation (NMT) models. However, increasingly complex tasks have revealed its disadvantages. First, a vocabulary cannot be modified o... 详细信息
来源: 评论
Instance-Aware Diffusion Implicit Process for Box-Based Instance Segmentation  26
Instance-Aware Diffusion Implicit Process for Box-Based Inst...
收藏 引用
26th European Conference on Artificial Intelligence, ECAI 2023
作者: Ren, Hao Liu, Xingsong Huang, Junjian Wan, Ru Pu, Jian Lu, Hong Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University China Institute of Science and Technology for Brain-inspired Intelligence Fudan University China Mogo.ai Information and Technology Co. Ltd. Shanghai China
The diffusion model has demonstrated impressive performance in image generation, but its potential for discriminative tasks such as instance segmentation remains unexplored. In this paper, we propose an Instance-aware... 详细信息
来源: 评论
HighlightRemover: Spatially Valid Pixel Learning for Image Specular Highlight Removal  24
HighlightRemover: Spatially Valid Pixel Learning for Image S...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Zhang, Ling Ma, Yidong Jiang, Zhi He, Weilei Bao, Zhongyun Fu, Gang Xu, Wenju Xiao, Chunxia School of Computer Science and Technology Hubei Key Laboratory of Intelligent Information Processing and Realtime Industrial Systems Wuhan University of Science and Technology Wuhan China School of Computer Science Wuhan University Wuhan China Department of Computing Hong Kong Polytechnic University Hong Kong Amazon Palo Alto United States
Recently, learning-based methods have made significant progress for image specular highlight removal. However, many of these approaches treat all the image pixels uniformly, overlooking the negative impact of invalid ... 详细信息
来源: 评论
A Fuzzy Creative Works Generation Algorithm Based on Graph Neural Network  6th
A Fuzzy Creative Works Generation Algorithm Based on Graph N...
收藏 引用
6th Euro-China Conference on intelligent Data Analysis and Applications, ECC 2019
作者: Zhang, Fuquan Wang, Yiou Zhao, Guifen Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Minjiang University Fuzhou350121 China Beijing Institute of Science and Technology Information Beijing100044 China
A fuzzy creative works generation algorithm based on graph neural network is proposed. Firstly, the multi-label fuzzy creative data set is constructed. Secondly, fuzzy logical correlations between creative objects are... 详细信息
来源: 评论
DCTracker: Differential Motion Compensation Based Multi-Object Tracking in Satellite Videos
DCTracker: Differential Motion Compensation Based Multi-Obje...
收藏 引用
Signal, information and Data processing (ICSIDP), IEEE International Conference on
作者: Yuting Shi Yin Zhuang He Chen Miaoxin Cai Jianlin Xie Shuyu Gan National Key Laboratory of Science and Technology on Space-Born Intelligent Information Processing (SBIIP) Beijing Institute of Technology Beijing China
Multi-object tracking (MOT) in satellite videos is a vital technique in Earth observation, serving various purposes such as smart city management and military target reconnaissance. However, satellite videos face seve... 详细信息
来源: 评论
Interpretable Object Recognition by Semantic Prototype Analysis
Interpretable Object Recognition by Semantic Prototype Analy...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Qiyang Wan Ruiping Wang Xilin Chen Institute of Computing Technology CAS Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Beijing China University of Chinese Academy of Sciences Beijing China
People can usually give reasons for recognizing a particular object as a specific category, using various means such as body language (by pointing out) and natural language (by telling). This inspires us to develop a ...
来源: 评论