咨询与建议

限定检索结果

文献类型

  • 1,937 篇 会议
  • 1,477 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 3,417 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,246 篇 工学
    • 1,570 篇 计算机科学与技术...
    • 1,333 篇 软件工程
    • 531 篇 信息与通信工程
    • 299 篇 控制科学与工程
    • 252 篇 生物工程
    • 202 篇 电气工程
    • 197 篇 电子科学与技术(可...
    • 192 篇 机械工程
    • 181 篇 光学工程
    • 166 篇 生物医学工程(可授...
    • 124 篇 化学工程与技术
    • 100 篇 仪器科学与技术
    • 65 篇 动力工程及工程热...
    • 59 篇 建筑学
    • 59 篇 交通运输工程
    • 51 篇 土木工程
    • 47 篇 材料科学与工程(可...
  • 1,243 篇 理学
    • 713 篇 数学
    • 318 篇 物理学
    • 295 篇 生物学
    • 208 篇 统计学(可授理学、...
    • 126 篇 化学
    • 94 篇 系统科学
  • 621 篇 管理学
    • 357 篇 图书情报与档案管...
    • 280 篇 管理科学与工程(可...
    • 90 篇 工商管理
  • 127 篇 医学
    • 106 篇 临床医学
    • 86 篇 基础医学(可授医学...
    • 55 篇 药学(可授医学、理...
  • 56 篇 法学
    • 46 篇 社会学
  • 50 篇 农学
  • 32 篇 经济学
  • 20 篇 教育学
  • 15 篇 艺术学
  • 10 篇 军事学
  • 9 篇 哲学
  • 7 篇 文学

主题

  • 156 篇 feature extracti...
  • 137 篇 semantics
  • 116 篇 training
  • 83 篇 information proc...
  • 71 篇 laboratories
  • 69 篇 deep learning
  • 64 篇 face recognition
  • 62 篇 object detection
  • 62 篇 computational mo...
  • 60 篇 computers
  • 54 篇 visualization
  • 54 篇 accuracy
  • 50 篇 data mining
  • 47 篇 humans
  • 46 篇 image segmentati...
  • 46 篇 convolution
  • 44 篇 data models
  • 41 篇 decoding
  • 41 篇 robustness
  • 40 篇 machine learning

机构

  • 439 篇 key laboratory o...
  • 320 篇 university of ch...
  • 83 篇 key laboratory o...
  • 74 篇 peng cheng labor...
  • 62 篇 key lab of intel...
  • 52 篇 key lab of intel...
  • 49 篇 key laboratory o...
  • 47 篇 fujian provincia...
  • 46 篇 key laboratory o...
  • 46 篇 jiangxi province...
  • 46 篇 graduate univers...
  • 45 篇 school of comput...
  • 45 篇 the key laborato...
  • 45 篇 chinese academy ...
  • 39 篇 key laboratory o...
  • 38 篇 graduate univers...
  • 37 篇 hubei province k...
  • 34 篇 national enginee...
  • 33 篇 institute of dig...
  • 33 篇 school of inform...

作者

  • 101 篇 zhongzhi shi
  • 95 篇 xilin chen
  • 92 篇 shiguang shan
  • 89 篇 shi zhongzhi
  • 80 篇 liu qun
  • 70 篇 huang qingming
  • 45 篇 qing he
  • 41 篇 he qing
  • 40 篇 xu qianqian
  • 40 篇 feng yang
  • 39 篇 li hua
  • 38 篇 zhang fuquan
  • 38 篇 wen gao
  • 37 篇 liu yang
  • 32 篇 cao juan
  • 31 篇 jiang shuqiang
  • 30 篇 chen xilin
  • 30 篇 zhuang fuzhen
  • 30 篇 gao wen
  • 29 篇 shen linlin

语言

  • 3,129 篇 英文
  • 222 篇 其他
  • 75 篇 中文
检索条件"机构=The Key Laboratory of Intelligent Information Processing Institute of Computing Technology"
3417 条 记 录,以下是271-280 订阅
排序:
A Cross-domain PAPR Reduction Method for OTFS Modulation
A Cross-domain PAPR Reduction Method for OTFS Modulation
收藏 引用
IEEE International Conference on Communications in China (ICCC)
作者: Dongkai Zhou Siqiang Wang Zhong Zheng Jing Guo Zesong Fei Weihua Yu School of Information and Electronics Beijing Institute of Technology Beijing China National Key Laboratory of Science and Technology on Space-Born Intelligent Information Processing
In this work, a cross-domain PAPR reduction scheme is proposed, which is a combination of the phase rotation in the Delay-Doppler (DD) domain and the iterative clipping filtering (ICF) in the time domain. The former t... 详细信息
来源: 评论
Generalized-Extended-State-Observer and Equivalent-Input-Disturbance Methods for Active Disturbance Rejection: Deep Observation and Comparison
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第4期10卷 957-968页
作者: Jinhua She Kou Miyamoto Qing-Long Han Min Wu Hiroshi Hashimoto Qing-Guo Wang School of Engineering Tokyo University of TechnologyHachiojiTokyo 192-0982Japan K.Miyamoto is with the Institute of Technology Shimizu CorporationKotoTokyo 135-0044Japan School of Science Computing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVIC 3122Australia School of Automation China University of GeosciencesWuhan 430074 Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of EducationWuhan 430074China School of Industrial Technology Advanced Institute of Industrial TechnologyTokyo 140-0011Japan Institute of Artificial Intelligence and Future Networks Beijing Normal UniversityZhuhai 519087 Guangdong Key Lab of AI and Multi-Modal Data Processing Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science BNUHKBU United International College Zhuhai 519087China
Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state *** paper presents a deep observation on and a comparison between two of those methods:the... 详细信息
来源: 评论
An Analysis on the Training Mode of Master Students in Artificial Intelligence Field for Electronic information Professional Degree—Take Hunan Normal University as an Example  8th
An Analysis on the Training Mode of Master Students in Artif...
收藏 引用
8th EAI International Conference on e-Learning, e-Education, and Online Training, eLEOT 2022
作者: Fu, Weina Liu, Shuai Institute of Information Science and Engineering Hunan Normal University Hunan Changsha410081 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Changsha410081 China
The ability of independent innovation in the field of artificial intelligence is a key element to occupy the commanding heights of future technology and talent competition in China. The cultivation of artificial intel... 详细信息
来源: 评论
Suppress content shift: better diffusion features via off-the-shelf generation techniques  24
Suppress content shift: better diffusion features via off-th...
收藏 引用
Proceedings of the 38th International Conference on Neural information processing Systems
作者: Benyuan Meng Qianqian Xu Zitai Wang Zhiyong Yang Xiaochun Cao Qingming Huang Institute of Information Engineering CAS and School of Cyber Security University of Chinese Academy of Sciences Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS and Peng Cheng Laboratory Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS School of Computer Science and Tech. University of Chinese Academy of Sciences School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University School of Computer Science and Tech. University of Chinese Academy of Sciences and Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS and Key Laboratory of Big Data Mining and Knowledge Management CAS
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
来源: 评论
Bi-Temporal Feature Relational Distillation for On-Board Lightweight Change Detection in Remote Sensing Imagery
收藏 引用
IEEE Transactions on Aerospace and Electronic Systems 2025年
作者: Wang, Guoqing Chen, He Li, Jie Wang, Jue Liu, Wenchao Chen, Liang Beijing Institute of Technology National Key Laboratory of Science and Technology on Space-Born Intelligent Information Processing Beijing100081 China Shanghai Aerospace Electronic Technology Institute Shanghai201109 China
Deep learning models for remote sensing change detection (CD) require significant resources, challenging real-time applications on spaceborne devices. Knowledge distillation (KD) technology is a potential solution tha... 详细信息
来源: 评论
Unifying Sum Rate Analysis and Optimization of RIS-Assisted MU-MIMO Networks: An Operator-Valued Free Probability Approach
Unifying Sum Rate Analysis and Optimization of RIS-Assisted ...
收藏 引用
IEEE International Conference on Communications in China (ICCC)
作者: Siqiang Wang Zhong Zheng Jing Guo Zesong Fei School of Information and Electronics Beijing Institute of Technology Beijing China National Key Laboratory of Science and Technology on Space-Born Intelligent Information Processing
The fundamental performance limit of wireless systems is closely related to the transmission strategy of the transceivers as well as the wireless channels. As the channels are determined by the intrinsic characteristi... 详细信息
来源: 评论
Integrating Multi-scale Contextualized information for Byte-based Neural Machine Translation
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Langlin Feng, Yang Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China Key Laboratory of AI Safety Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Subword tokenization is a common method for vocabulary building in Neural Machine Translation (NMT) models. However, increasingly complex tasks have revealed its disadvantages. First, a vocabulary cannot be modified o... 详细信息
来源: 评论
Instance-Aware Diffusion Implicit Process for Box-Based Instance Segmentation  26
Instance-Aware Diffusion Implicit Process for Box-Based Inst...
收藏 引用
26th European Conference on Artificial Intelligence, ECAI 2023
作者: Ren, Hao Liu, Xingsong Huang, Junjian Wan, Ru Pu, Jian Lu, Hong Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University China Institute of Science and Technology for Brain-inspired Intelligence Fudan University China Mogo.ai Information and Technology Co. Ltd. Shanghai China
The diffusion model has demonstrated impressive performance in image generation, but its potential for discriminative tasks such as instance segmentation remains unexplored. In this paper, we propose an Instance-aware... 详细信息
来源: 评论
HighlightRemover: Spatially Valid Pixel Learning for Image Specular Highlight Removal  24
HighlightRemover: Spatially Valid Pixel Learning for Image S...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Zhang, Ling Ma, Yidong Jiang, Zhi He, Weilei Bao, Zhongyun Fu, Gang Xu, Wenju Xiao, Chunxia School of Computer Science and Technology Hubei Key Laboratory of Intelligent Information Processing and Realtime Industrial Systems Wuhan University of Science and Technology Wuhan China School of Computer Science Wuhan University Wuhan China Department of Computing Hong Kong Polytechnic University Hong Kong Amazon Palo Alto United States
Recently, learning-based methods have made significant progress for image specular highlight removal. However, many of these approaches treat all the image pixels uniformly, overlooking the negative impact of invalid ... 详细信息
来源: 评论
A Fuzzy Creative Works Generation Algorithm Based on Graph Neural Network  6th
A Fuzzy Creative Works Generation Algorithm Based on Graph N...
收藏 引用
6th Euro-China Conference on intelligent Data Analysis and Applications, ECC 2019
作者: Zhang, Fuquan Wang, Yiou Zhao, Guifen Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Minjiang University Fuzhou350121 China Beijing Institute of Science and Technology Information Beijing100044 China
A fuzzy creative works generation algorithm based on graph neural network is proposed. Firstly, the multi-label fuzzy creative data set is constructed. Secondly, fuzzy logical correlations between creative objects are... 详细信息
来源: 评论