咨询与建议

限定检索结果

文献类型

  • 1,889 篇 会议
  • 1,463 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 3,355 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,207 篇 工学
    • 1,527 篇 计算机科学与技术...
    • 1,321 篇 软件工程
    • 524 篇 信息与通信工程
    • 272 篇 控制科学与工程
    • 250 篇 生物工程
    • 204 篇 电气工程
    • 195 篇 机械工程
    • 195 篇 电子科学与技术(可...
    • 182 篇 光学工程
    • 165 篇 生物医学工程(可授...
    • 126 篇 化学工程与技术
    • 99 篇 仪器科学与技术
    • 66 篇 动力工程及工程热...
    • 61 篇 交通运输工程
    • 57 篇 建筑学
    • 51 篇 材料科学与工程(可...
    • 49 篇 土木工程
  • 1,236 篇 理学
    • 713 篇 数学
    • 320 篇 物理学
    • 297 篇 生物学
    • 210 篇 统计学(可授理学、...
    • 123 篇 化学
    • 95 篇 系统科学
  • 624 篇 管理学
    • 360 篇 图书情报与档案管...
    • 280 篇 管理科学与工程(可...
    • 90 篇 工商管理
  • 126 篇 医学
    • 104 篇 临床医学
    • 87 篇 基础医学(可授医学...
    • 55 篇 药学(可授医学、理...
  • 55 篇 法学
    • 45 篇 社会学
  • 49 篇 农学
  • 32 篇 经济学
  • 20 篇 教育学
  • 15 篇 艺术学
  • 10 篇 军事学
  • 9 篇 哲学
  • 7 篇 文学

主题

  • 151 篇 feature extracti...
  • 137 篇 semantics
  • 115 篇 training
  • 83 篇 information proc...
  • 71 篇 laboratories
  • 65 篇 deep learning
  • 65 篇 computational mo...
  • 64 篇 face recognition
  • 60 篇 object detection
  • 60 篇 computers
  • 54 篇 visualization
  • 50 篇 accuracy
  • 49 篇 data mining
  • 47 篇 humans
  • 46 篇 convolution
  • 45 篇 image segmentati...
  • 43 篇 data models
  • 41 篇 decoding
  • 40 篇 robustness
  • 39 篇 optimization

机构

  • 436 篇 key laboratory o...
  • 313 篇 university of ch...
  • 83 篇 key laboratory o...
  • 72 篇 peng cheng labor...
  • 62 篇 key lab of intel...
  • 51 篇 key lab of intel...
  • 48 篇 key laboratory o...
  • 47 篇 fujian provincia...
  • 46 篇 jiangxi province...
  • 46 篇 graduate univers...
  • 45 篇 the key laborato...
  • 44 篇 chinese academy ...
  • 43 篇 school of comput...
  • 43 篇 key laboratory o...
  • 39 篇 key laboratory o...
  • 38 篇 graduate univers...
  • 36 篇 hubei province k...
  • 33 篇 institute of dig...
  • 33 篇 school of inform...
  • 33 篇 school of comput...

作者

  • 101 篇 zhongzhi shi
  • 96 篇 xilin chen
  • 91 篇 shiguang shan
  • 90 篇 shi zhongzhi
  • 80 篇 liu qun
  • 69 篇 huang qingming
  • 45 篇 qing he
  • 40 篇 li hua
  • 40 篇 he qing
  • 39 篇 zhang fuquan
  • 39 篇 xu qianqian
  • 38 篇 feng yang
  • 38 篇 wen gao
  • 36 篇 liu yang
  • 32 篇 jiang shuqiang
  • 32 篇 cao juan
  • 30 篇 zhuang fuzhen
  • 29 篇 chen xilin
  • 29 篇 gao wen
  • 29 篇 zhuge hai

语言

  • 3,167 篇 英文
  • 124 篇 其他
  • 70 篇 中文
检索条件"机构=The Key Laboratory of Intelligent Information Processing Institute of Computing Technology"
3355 条 记 录,以下是3261-3270 订阅
排序:
A review of uncertainty quantification in deep learning: Techniques, applications and challenges
arXiv
收藏 引用
arXiv 2020年
作者: Abdar, Moloud Pourpanah, Farhad Hussain, Sadiq Rezazadegan, Dana Liu, Li Ghavamzadeh, Mohammad Fieguth, Paul Cao, Xiaochun Khosravi, Abbas Rajendra Acharya, U. Makarenkov, Vladimir Nahavandi, Saeid Deakin University Australia College of Mathematics and Statistics Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen518060 China Dibrugarh University Dibrugarh India Department of Computer Science and Software Engineering Swinburne University of Technology Melbourne Australia Center for Machine Vision and Signal Analysis University of Oulu Oulu Finland Google research United States Department of Systems Design Engineering University of Waterloo Waterloo Canada State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing China Department of Electronics and Computer Engineering Ngee Ann Polytechnic Clementi Singapore Department of Computer Science University of Quebec in Montreal MontrealQC Canada
—Uncertainty quantification (UQ) plays a pivotal role in the reduction of uncertainties during both optimization and decision making, applied to solve a variety of real-world applications in science and engineering. ... 详细信息
来源: 评论
technology Roadmap for Flexible Sensors
收藏 引用
ACS NANO 2023年 第6期17卷 5211-5295页
作者: Luo, Yifei Abidian, Mohammad Reza Ahn, Jong-Hyun Akinwande, Deji Andrews, Anne M. Antonietti, Markus Bao, Zhenan Berggren, Magnus Berkey, Christopher A. Bettinger, Christopher John Chen, Jun Chen, Peng Cheng, Wenlong Cheng, Xu Choi, Seon-Jin Chortos, Alex Dagdeviren, Canan Dauskardt, Reinhold H. Di, Chong-an Dickey, Michael D. Duan, Xiangfeng Facchetti, Antonio Fan, Zhiyong Fang, Yin Feng, Jianyou Feng, Xue Gao, Huajian Gao, Wei Gong, Xiwen Guo, Chuan Fei Guo, Xiaojun Hartel, Martin C. He, Zihan Ho, John S. Hu, Youfan Huang, Qiyao Huang, Yu Huo, Fengwei Hussain, Muhammad M. Javey, Ali Jeong, Unyong Jiang, Chen Jiang, Xingyu Kang, Jiheong Karnaushenko, Daniil Khademhosseini, Ali Kim, Dae-Hyeong Kim, Il-Doo Kireev, Dmitry Kong, Lingxuan Lee, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Li, Fengyu Li, Jinxing Liang, Cuiyuan Lim, Chwee Teck Lin, Yuanjing Lipomi, Darren J. Liu, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Loh, Xian Jun Lu, Nanshu Lv, Zhisheng Magdassi, Shlomo Malliaras, George G. Matsuhisa, Naoji Nathan, Arokia Niu, Simiao Pan, Jieming Pang, Changhyun Pei, Qibing Peng, Huisheng Qi, Dianpeng Ren, Huaying Rogers, John A. Rowe, Aaron Schmidt, Oliver G. Sekitani, Tsuyoshi Seo, Dae-Gyo Shen, Guozhen Sheng, Xing Shi, Qiongfeng Someya, Takao Song, Yanlin Stavrinidou, Eleni Su, Meng Sun, Xuemei Takei, Kuniharu Tao, Xiao-Ming Tee, Benjamin C. K. Thean, Aaron Voon-Yew Trung, Tran Quang Wan, Changjin Wang, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Weiss, Paul S. Wen, Hanqi Xu, Sheng Xu, Tailin Yan, Hongping Yan, Xuzhou Yang, Hui Yang, Le Yang, Shuaijian Yin, Lan Yu, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Zamburg, Evgeny Zhang, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhao, Siyuan Zhao, Xuanhe Zheng, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zhou, Tao Zhu, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zou, Guijin Chen, Xiaodong 08-03 Innovis Singapore 138634 Republic of Singapore Innovative Centre for Flexible Devices (iFLEX) School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore Department of Biomedical Engineering University of Houston Houston Texas 77024 United States School of Electrical and Electronic Engineering Yonsei University Seoul 03722 Republic of Korea Department of Electrical and Computer Engineering The University of Texas at Austin Austin Texas 78712 United States Microelectronics Research Center The University of Texas at Austin Austin Texas 78758 United States Department of Chemistry and Biochemistry California NanoSystems Institute and Department of Psychiatry and Biobehavioral Sciences Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology University of California Los Angeles Los Angeles California 90095 United States Colloid Chemistry Department Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany Department of Chemical Engineering Stanford University Stanford California 94305 United States Laboratory of Organic Electronics Department of Science and Technology Campus Norrköping Linköping University 83 Linköping Sweden Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC) SE-100 44 Stockholm Sweden Department of Materials Science and Engineering Stanford University Stanford California 94301 United States Department of Biomedical Engineering and Department of Materials Science and Engineering Carnegie Mellon University Pittsburgh Pennsylvania 15213 United States Department of Bioengineering University of California Los Angeles Los Angeles California 90095 United States School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University Singapore 637457 Singapore Nanobionics Group Department of Chemical and Biological Engineering Monash University Clayton Australia 3800 Monash
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitati... 详细信息
来源: 评论
Automated identification and quantification of myocardial inflammatory infiltration in digital histological images to diagnose myocarditis
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Yanyun Hua, Xiumeng Zhu, Shouping Wang, Congrui Chen, Xiao Shi, Yu Song, Jiangping Zhou, Weihua School of Life Science and Technology Xidian University Engineering Research Center of Molecular and Neuro Imaging Ministry of Education Shaanxi Xi'An China Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment School of Life Science and Technology Xidian University Shaanxi Xi'An China Innovation Center for Advanced Medical Imaging and Intelligent Medicine Guangzhou Institute of Technology Xidian University Guangdong Guangzhou China Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials Animal Experimental Centre Fuwai Hospital National Centre for Cardiovascular Disease Chinese Academy of Medical Sciences Peking Union Medical College Beijing China State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences Peking Union Medical College 167A Beilishi Road Xi Cheng District Beijing China Department of Cardiovascular Surgery Fuwai Hospital National Center for Cardiovascular Diseases National Clinical Research Center of Cardiovascular Diseases State Key Laboratory of Cardiovascular Disease Chinese Academy of Medical Sciences Peking Union Medical College Beijing China The Cardiomyopathy Research Group Fuwai Hospital Beijing China Department of Applied Computing Michigan Technological University HoughtonMI United States Center for Biocomputing and Digital Health Institute of Computing and Cybersystems Health Research Institute Michigan Technological University HoughtonMI United States
Background Given the dimensionality of WSIs and the increase in the number of potential cases, the manual histological diagnosis of myocarditis based on Dallas Criteria is time-consuming, experience-dependent. Objecti... 详细信息
来源: 评论
Multifractal temporally weighted detrended partial cross-correlation analysis of two non-stationary time series affected by common external factors
收藏 引用
Physica A: Statistical Mechanics and its Applications 2021年 573卷
作者: Bao-Gen Li Dian-Yi Ling Zu-Guo Yu Hunan Key Laboratory for Computation and Simulation in Science and Engineering and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan University Xiangtan Hunan 411105 China School of Electrical Engineering and Computer Science Queensland University of Technology GPO Box 2434 Brisbane Q4001 Australia
When common factors strongly influence two cross-correlated time series recorded in complex natural and social systems, the results will be biased if we use multifractal detrended cross-correlation analysis (MF-DXA) w... 详细信息
来源: 评论
Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization
收藏 引用
Computational biology and chemistry 2015年 57卷 21-8页
作者: Zhi-Qin Zhao Guo-Sheng Han Zu-Guo Yu Jinyan Li Hunan Key Laboratory for Computation and Simulation in Science and Engineering and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan University Xiangtan Hunan 411105 China. Hunan Key Laboratory for Computation and Simulation in Science and Engineering and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan University Xiangtan Hunan 411105 China School of Mathematical Sciences Queensland University of Technology GPO Box 2434 Brisbane Q4001 Australia. Electronic address: yuzg1970@***. Advanced Analytics Institute & Centre for Health Technologies University of Technology Sydney Broadway NSW 2007 Australia. Electronic address: jinyan.li@uts.edu.au.
Random walk on heterogeneous networks is a recently emerging approach to effective disease gene prioritization. Laplacian normalization is a technique capable of normalizing the weight of edges in a network. We use th... 详细信息
来源: 评论
CNN-based invertible wavelet scattering for the investigation of diffusion properties of the in vivo human heart in diffusion tensor imaging
arXiv
收藏 引用
arXiv 2019年
作者: Deng, Zeyu Wang, Lihui Kuai, Zixiang Chen, Qijian Cheng, Xinyu Yang, Feng Yang, Jie Zhu, Yuemin Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province College of Computer Science and Technology Guizhou University Guiyang550025 China Imaging Center Harbin Medical University Cancer Hospital Harbin150081 China School of Computer and Information Technology Beijing Jiaotong University Beijing100044 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China University Lyon INSA Lyon CNRS Inserm IRP Metislab CREATIS UMR5220 U1206 LyonF-69621 France
In vivo diffusion tensor imaging (DTI) is a promising technique to investigate noninvasively the fiber structures of the in vivo human heart. However, signal loss due to motions remains a persistent problem in in vivo... 详细信息
来源: 评论
Identification of pre-microRNAs by characterizing their sequence order evolution information and secondary structure graphs
收藏 引用
BMC bioinformatics 2018年 第SUPPL 19期19卷 521页
作者: Yuanlin Ma Zuguo Yu Guosheng Han Jinyan Li Vo Anh Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering Xiangtan University Hunan 411105 China. Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering Xiangtan University Hunan 411105 China. yuzuguo@***. School of Electrical Engineering and Computer Science Queensland University of Technology GPO Box 2434 Brisbane Q4001 Australia. yuzuguo@***. Advanced Analytics Institute Faculty of Engineering & IT University of Technology Sydney P.O Box 123 Broadway NSW 2007 Australia. School of Mathematical Sciences Queensland University of Technology GPO Box 2434 Brisbane Q4001 Australia.
BACKGROUND:Distinction between pre-microRNAs (precursor microRNAs) and length-similar pseudo pre-microRNAs can reveal more about the regulatory mechanism of RNA biological processes. Machine learning techniques have b... 详细信息
来源: 评论
Robotic Electrospinning Actuated by Non-Circular Joint Continuum Manipulator for Endoluminal Therapy
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Zicong Lou, Chuqian Jin, Zhu Huang, Shaoping Liu, Ning Zou, Yun Kovac, Mirko Gao, Anzhu Yang, Guang-Zhong Institute of Medical Robotics Department of Bioengineering Shanghai Jiao Tong University Shanghai200240 China Imperial College London Empa Swiss Federal Laboratories for Materials Science and Technology Limited Hong Kong999077 Hong Kong Aerial Robotics Laboratory Imperial College London LondonSW7 2AZ United Kingdom Institute of Medical Robotics Department of Automation Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education Shanghai200240 China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai200240 China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China
Electrospinning has exhibited excellent benefits to treat the trauma for tissue engineering due to its produced micro/nano fibrous structure. It can effectively adhere to the tissue surface for long-term continuous th... 详细信息
来源: 评论
Multifractal fluctuations of waiting time sequence of aftershocks
收藏 引用
Journal of Physics: Conference Series 2018年 第1期1053卷
作者: Zuhan Liu Lili Wang Shuhua Qi Jiangxi Province Key Laboratory for Water Information Cooperative Sensing and Intelligent Processing Nanchang Institute of Technology Nanchang Jiangxi China Key Laboratory of Poyang Lake Wetland and Watershed Research Ministry of Education Jiangxi Normal University Nanchang Jiangxi China School of Science Nanchang Institute of Technology Nanchang Jiangxi China
After a large earthquake there will be series of aftershocks. The analyzed regularity of these aftershocks will be conducive to recognize the characteristics of the aftershocks and explore their formation and evolutio...
来源: 评论
A Novel Multi-Agent Deep Reinforcement Learning Approach
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1757卷
作者: Dong Yin Zhe Zhao Yinglong Dai Han Long College of Intelligence Science and Technology National University of Defense Technology Changsha 410073 China College of Liberal Arts and Sciences National University of Defense Technology Changsha 410073 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha 410081 China
Borrowing the power of deep neural networks, deep reinforcement learning achieved big success in games, and it becomes a popular method to solve the sequential decision-making problems. However, the success is still r...
来源: 评论