咨询与建议

限定检索结果

文献类型

  • 3,010 篇 期刊文献
  • 2,650 篇 会议
  • 4 册 图书

馆藏范围

  • 5,664 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,668 篇 工学
    • 2,344 篇 计算机科学与技术...
    • 1,946 篇 软件工程
    • 837 篇 信息与通信工程
    • 438 篇 生物工程
    • 429 篇 控制科学与工程
    • 425 篇 电气工程
    • 316 篇 电子科学与技术(可...
    • 294 篇 化学工程与技术
    • 253 篇 生物医学工程(可授...
    • 246 篇 机械工程
    • 228 篇 光学工程
    • 187 篇 材料科学与工程(可...
    • 162 篇 动力工程及工程热...
    • 160 篇 交通运输工程
    • 142 篇 仪器科学与技术
    • 142 篇 建筑学
    • 136 篇 土木工程
  • 2,045 篇 理学
    • 1,019 篇 数学
    • 523 篇 物理学
    • 518 篇 生物学
    • 338 篇 统计学(可授理学、...
    • 302 篇 化学
    • 148 篇 系统科学
  • 1,047 篇 管理学
    • 615 篇 管理科学与工程(可...
    • 481 篇 图书情报与档案管...
    • 222 篇 工商管理
  • 288 篇 医学
    • 237 篇 临床医学
    • 154 篇 基础医学(可授医学...
  • 176 篇 法学
    • 143 篇 社会学
  • 147 篇 农学
  • 112 篇 经济学
    • 112 篇 应用经济学
  • 44 篇 教育学
  • 16 篇 文学
  • 12 篇 军事学
  • 6 篇 艺术学
  • 1 篇 历史学

主题

  • 180 篇 semantics
  • 153 篇 feature extracti...
  • 137 篇 deep learning
  • 134 篇 training
  • 95 篇 computational mo...
  • 83 篇 data models
  • 76 篇 convolution
  • 76 篇 machine learning
  • 73 篇 data mining
  • 70 篇 predictive model...
  • 66 篇 accuracy
  • 61 篇 neural networks
  • 56 篇 visualization
  • 54 篇 object detection
  • 53 篇 federated learni...
  • 52 篇 big data
  • 52 篇 optimization
  • 52 篇 contrastive lear...
  • 50 篇 graph neural net...
  • 49 篇 adaptation model...

机构

  • 166 篇 school of inform...
  • 146 篇 key laboratory o...
  • 132 篇 school of econom...
  • 94 篇 school of comput...
  • 93 篇 state key labora...
  • 81 篇 fujian provincia...
  • 77 篇 henan key labora...
  • 73 篇 college of big d...
  • 73 篇 research center ...
  • 73 篇 school of comput...
  • 72 篇 school of comput...
  • 70 篇 university of ch...
  • 67 篇 guangdong key la...
  • 60 篇 hubei key labora...
  • 54 篇 shenzhen researc...
  • 53 篇 shandong provinc...
  • 52 篇 shandong enginee...
  • 51 篇 key laboratory o...
  • 51 篇 school of softwa...
  • 49 篇 school of inform...

作者

  • 47 篇 shi yong
  • 41 篇 zhang rui
  • 41 篇 yong shi
  • 39 篇 pan jeng-shyang
  • 37 篇 chang kuo-chi
  • 37 篇 chen hong
  • 36 篇 wu xindong
  • 34 篇 wang meng
  • 33 篇 du xiaoyong
  • 33 篇 zhang jing
  • 32 篇 liu yang
  • 32 篇 xue xingsi
  • 31 篇 liu jun
  • 31 篇 li cuiping
  • 29 篇 wen ji-rong
  • 29 篇 huang qingming
  • 29 篇 xindong wu
  • 28 篇 chu kai-chun
  • 25 篇 hong chen
  • 25 篇 shen linlin

语言

  • 4,903 篇 英文
  • 655 篇 其他
  • 118 篇 中文
  • 4 篇 德文
  • 4 篇 法文
检索条件"机构=The Key Laboratory of Knowledge Engineering with Big Data"
5664 条 记 录,以下是571-580 订阅
排序:
Dual decoder UNet with Contrastive learning for Brain Image Registration
Dual decoder UNet with Contrastive learning for Brain Image ...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Zhang, Ying Guo, Shuai Shi, Dantong Xiang, Jinhai Huazhong Agricultural University College of Informatics Wuhan430070 China Agricultural Bioinformatics Key Laboratory of Hubei Province China Key Laboratory of Smart Farming for Agricultural Animals Ministry of Agriculture Hubei Engineering Technology Research Center of Agricultural Big Data Engineering Research Center of Intelligent Technology for Agriculture Ministry of Education Huazhong Agricultural University Wuhan430070 China
The core of the image registration task is to accurately extract and compare the spatial feature information between moving and fixed images. The model must not only be able to capture features inside an image, but al... 详细信息
来源: 评论
FedDGL: Federated Dynamic Graph Learning for Temporal Evolution and data Heterogeneity  16
FedDGL: Federated Dynamic Graph Learning for Temporal Evolut...
收藏 引用
16th Asian Conference on Machine Learning, ACML 2024
作者: Xie, Zaipeng Li, Likun Chen, Xiangbin Yu, Hao Huang, Qian Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University Nanjing China College of Computer Science and Software Engineering Hohai University Nanjing China College of Artificial Intelligence and Automation Hohai University Nanjing China
Federated graph learning enhances federated learning by enabling privacy-preserving collaborative training on distributed graph data. While traditional methods are effective in managing data heterogeneity, they typica... 详细信息
来源: 评论
Multi-Server Cooperative Video Caching Strategy Based on Deep Reinforcement Learning in Cloud-Edge Computing  10
Multi-Server Cooperative Video Caching Strategy Based on Dee...
收藏 引用
10th International Conference on big data Computing and Communications, bigCOM 2024
作者: Li, Guanyu Mao, Yingchi Peng, Xinxin Zheng, Haotian Wang, Zibo College of Computer Science and Software Engineering Hohai University Nanjing China Hohai University Key Laboratory of Water Big Data Technology of Ministry of Water Resources Nanjing China Huaneng Hydro Lancang Xiaowan Hydropower Plant Dali China
The soaring number of mobile devices has led the innovation of the edge caching in edge computing, which relieves the heavy pressure of cloud computing. However, with the escalating popularity of short video services,... 详细信息
来源: 评论
Learning Semantic-Rich Relation-Selective Entity Representation for knowledge Graph Completion  28th
Learning Semantic-Rich Relation-Selective Entity Representat...
收藏 引用
28th International Conference on database Systems for Advanced Applications, DASFAA 2023
作者: Xu, Zenan Qiu, Zexuan Su, Qinliang School of Computer Science and Engineering Sun Yat-sen University Guangzhou China The Chinese University of Hong Kong Hong Kong Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China
Many existing knowledge graph embedding methods learn semantic representations for entities by using graph neural networks (GNN) to harvest their intrinsic relevances. However, these methods mostly represent every ent... 详细信息
来源: 评论
Research on WNN Greenhouse Temperature Prediction Method Based on GA
收藏 引用
Phyton-International Journal of Experimental Botany 2022年 第10期91卷 2283-2296页
作者: Wenbin Dai Lina Wang Binrui Wang Xiaohong Cui Xue Li College of Mechanical and Electronic Engineering China Jiliang UniversityHangzhou310018China Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province China Jiliang UniversityHangzhou310018China
Temperature in agricultural production has a direct impact on the growth of *** emergence of greenhouses has improved the impact of the original unpredictable changes in temperature,but the temperature modeling of g... 详细信息
来源: 评论
Less Is More: Token Context-Aware Learning for Object Tracking  39
Less Is More: Token Context-Aware Learning for Object Tracki...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Xu, Chenlong Zhong, Bineng Liang, Qihua Zheng, Yaozong Li, Guorong Song, Shuxiang Key Laboratory of Education Blockchain and Intelligent Technology Ministry of Education Guangxi Normal University Guilin541004 China Key Laboratory of Big Data Mining and Knowledge Management University of Chinese Academy of Sciences China
Recently, several studies have shown that utilizing contextual information to perceive target states is crucial for object tracking. They typically capture context by incorporating multiple video frames. However, thes... 详细信息
来源: 评论
PEDTrans: A Fine-Grained Visual Classification Model for Self-attention Patch Enhancement and Dropout  16th
PEDTrans: A Fine-Grained Visual Classification Model for Se...
收藏 引用
16th Asian Conference on Computer Vision, ACCV 2022
作者: Lin, Xuhong Yan, Qian Wu, Caicong Chen, Yifei College of Information and Electrical Engineering China Agricultural University Beijing100083 China Key Laboratory of Agricultural Machinery Monitoring and Big Data Applications Ministry of Agriculture and Rural Affairs Beijing100083 China
Fine-grained visual classification (FGVC) is an essential and challenging classification task in computer visual classification, aiming to identify different cars and birds. Recently, most studies use a convolutional ... 详细信息
来源: 评论
Hash Function Based on Quantum Walks with Two-Step Memory
Hash Function Based on Quantum Walks with Two-Step Memory
收藏 引用
2024 International Conference on Computing, Machine Learning and data Science, CMLDS 2024
作者: Zhou, Qing Lu, Songfeng Yang, Hao Hubei Key Laboratory of Distributed System Security Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering Huazhong University of Science and Technology Hubei Wuhan China Shenzhen Huazhong University of Science and Technology Research Institute Guangdong Shenzhen China
We propose a new quantum-walk-based hash function QHF2M by combining two types of quantum walks with two-step memory and numerically test its statistical performance. The test result shows that QHF2M is on a par with ... 详细信息
来源: 评论
Advance of Thyroid Nodule Ultrasound Diagnosis Based on Deep Learning  29th
Advance of Thyroid Nodule Ultrasound Diagnosis Based on Deep...
收藏 引用
29th International Conference on Computational and Experimental engineering and Sciences, ICCES 2023
作者: Wan, Huiling Chen, Shuwen Ni, Yiyang Qi, Shaojia Qu, Hui School of Physics and Information Engineering Jiangsu Second Normal University Nanjing211200 China State Key Laboratory of Millimeter Waves Southeast University Nanjing210096 China Jiangsu Province Engineering Research Center of Basic Education Big Data Application Nanjing211200 China
The incidence of thyroid nodules is increasing rapidly worldwide. In order to reduce the burden on doctors and improve the accuracy of diagnosis, ultrasound imaging plays an important role in the diagnosis and follow-... 详细信息
来源: 评论
REQUIRED NUMBER OF ITERATIONS FOR SPARSE SIGNAL RECOVERY VIA ORTHOGONAL LEAST SQUARES
收藏 引用
Journal of Computational Mathematics 2023年 第1期41卷 1-17页
作者: Haifeng Li Jing Zhang Jinming Wen Dongfang Li Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control College of Mathematics and Information ScienceHenan Normal UniversityXinxiang 453007China College of Information Science and Technology Jinan UniversityGuangzhou 510632China School of Mathematics and Statistics Huazhong University of Science and TechnologyWuhan 430074China Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and TechnologyWuhan 430074China
In countless applications,we need to reconstruct a K-sparse signal x∈R n from noisy measurements y=Φx+v,whereΦ∈R^(m×n)is a sensing matrix and v∈R m is a noise *** least squares(OLS),which selects at each ste... 详细信息
来源: 评论