咨询与建议

限定检索结果

文献类型

  • 943 篇 会议
  • 605 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,550 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 954 篇 工学
    • 628 篇 计算机科学与技术...
    • 556 篇 软件工程
    • 184 篇 信息与通信工程
    • 181 篇 控制科学与工程
    • 155 篇 生物工程
    • 141 篇 生物医学工程(可授...
    • 128 篇 光学工程
    • 106 篇 机械工程
    • 99 篇 电气工程
    • 88 篇 电子科学与技术(可...
    • 67 篇 化学工程与技术
    • 57 篇 仪器科学与技术
    • 36 篇 交通运输工程
    • 34 篇 建筑学
    • 32 篇 材料科学与工程(可...
    • 31 篇 土木工程
    • 27 篇 动力工程及工程热...
    • 25 篇 力学(可授工学、理...
  • 556 篇 理学
    • 243 篇 数学
    • 206 篇 物理学
    • 167 篇 生物学
    • 83 篇 统计学(可授理学、...
    • 69 篇 化学
    • 46 篇 系统科学
  • 218 篇 管理学
    • 115 篇 图书情报与档案管...
    • 106 篇 管理科学与工程(可...
    • 21 篇 工商管理
  • 115 篇 医学
    • 104 篇 临床医学
    • 72 篇 基础医学(可授医学...
    • 57 篇 药学(可授医学、理...
  • 21 篇 法学
  • 11 篇 经济学
  • 11 篇 农学
  • 9 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 92 篇 feature extracti...
  • 61 篇 training
  • 49 篇 semantics
  • 41 篇 task analysis
  • 32 篇 deep learning
  • 32 篇 electroencephalo...
  • 32 篇 accuracy
  • 30 篇 computational mo...
  • 26 篇 object detection
  • 26 篇 semantic segment...
  • 26 篇 visualization
  • 24 篇 cameras
  • 24 篇 robustness
  • 23 篇 neural networks
  • 23 篇 predictive model...
  • 22 篇 conferences
  • 22 篇 generative adver...
  • 21 篇 support vector m...
  • 20 篇 machine learning
  • 19 篇 electrodes

机构

  • 239 篇 key laboratory o...
  • 192 篇 school of comput...
  • 81 篇 shenzhen college...
  • 79 篇 school of data a...
  • 76 篇 university of ch...
  • 74 篇 college of intel...
  • 69 篇 cas key laborato...
  • 64 篇 peng cheng labor...
  • 59 篇 guangdong provin...
  • 53 篇 tianjin key labo...
  • 44 篇 cas key laborato...
  • 42 篇 tianjin key labo...
  • 35 篇 guangdong-hong k...
  • 32 篇 tianjin key labo...
  • 31 篇 cas key laborato...
  • 31 篇 guangdong provin...
  • 29 篇 shenzhen institu...
  • 27 篇 key laboratory o...
  • 27 篇 anhui province k...
  • 27 篇 the chinese univ...

作者

  • 121 篇 zheng wei-shi
  • 80 篇 guanglin li
  • 58 篇 wu xinyu
  • 42 篇 li guanglin
  • 41 篇 wei-shi zheng
  • 38 篇 yunong zhang
  • 36 篇 xinyu wu
  • 35 篇 xie xiaohua
  • 28 篇 lai jianhuang
  • 28 篇 shixiong chen
  • 27 篇 fuji ren
  • 25 篇 lai jian-huang
  • 24 篇 mei yu
  • 24 篇 peng fang
  • 23 篇 wang xin
  • 22 篇 oluwarotimi will...
  • 22 篇 lu bao-liang
  • 22 篇 ren fuji
  • 21 篇 dang jianwu
  • 20 篇 wang longbiao

语言

  • 1,468 篇 英文
  • 73 篇 其他
  • 10 篇 中文
检索条件"机构=The Key Laboratory of Machine Intelligence and Advanced Computing"
1550 条 记 录,以下是1531-1540 订阅
排序:
KNOB particle swarm optimizer  1
收藏 引用
1st International Conference on Advances in Swarm intelligence, ICSI 2010
作者: Zhang, Junqi Liu, Kun Tan, Ying Key Laboratory of Embedded System and Service Computing Department of Computer Science and Technology Tongji University Shanghai 200092 China Department of Machine Intelligence School of Electronics Engineering and Computer Science Peking University Beijing 100871 China
It is not trivial to tune the swarm behavior just by parameter setting because of the randomness, complexity and dynamic involved in particle swarm optimizer (PSO). Hundreds of variants in the literature of last decad... 详细信息
来源: 评论
Hedge Detection and Scope Finding by Sequence Labeling with Normalized Feature Selection  14
Hedge Detection and Scope Finding by Sequence Labeling with ...
收藏 引用
14th Conference on Computational Natural Language Learning, CoNLL 2010
作者: Zhang, Shaodian Zhao, Hai Zhou, Guodong Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Dept of Computer Science and Engineering Shanghai Jiao Tong University China MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong University China School of Computer Science and Technology Soochow University China
This paper presents a system which adopts a standard sequence labeling technique for hedge detection and scope finding. For the first task, hedge detection, we formulate it as a hedge labeling problem, while for the s... 详细信息
来源: 评论
A comparative study on two large-scale hierarchical text classification tasks' solutions
A comparative study on two large-scale hierarchical text cla...
收藏 引用
International Conference on machine Learning and Cybernetics
作者: Zhang, Jian Zhao, Hai Lu, Bao-Liang Department of Computer Science and Engineering Center for Brain-Like Computing and Machine Intelligence Shanghai Jiao Tong University 800 Dong Chuan Road Shanghai 200240 China MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong University 800 Dong Chuan Road Shanghai 200240 China
Patent classification is a large scale hierarchical text classification (LSHTC) task. Though comprehensive comparisons, either learning algorithms or feature selection strategies, have been fully made in the text cate... 详细信息
来源: 评论
An Empirical Study on Development Set Selection Strategy for machine Translation Learning∗  5
An Empirical Study on Development Set Selection Strategy for...
收藏 引用
Joint 5th Workshop on Statistical machine Translation and MetricsMATR, WMT 2010 at the 48th Conference of the Associationfor Computational Linguistics, ACL 2010
作者: Hui, Cong Zhao, Hai Song, Yan Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University China MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong University 800 Dong Chuan Rd. Shanghai 200240 China Department of Chinese Translation and Linguistics City University of Hong Kong Hong Kong
This paper describes a statistical machine translation system for our participation for the WMT10 shared task. Based on MOSES, our system is capable of translating German, French and Spanish into English. Our main con... 详细信息
来源: 评论
A HSC-based sample selection method for Support Vector machine
A HSC-based sample selection method for Support Vector Machi...
收藏 引用
International Conference on machine Learning and Cybernetics
作者: He, Qing Li, Ning Shi, Zhong-Zhi Key Laboratory of Intelligent Information Processing Institute of Computing Technology Hebei University Baoding 071002 Hebei China Graduate University of Chinese Academy of Sciences Hebei University Baoding 071002 Hebei China Key Lab. of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding 071002 Hebei China
Support Vector machine (SVM) is a classification technique of machine learning based on statistical learning theory. A quadratic optimization problem needs to be solved in the algorithm, and with the increase of the s... 详细信息
来源: 评论
A comparative study on two large-scale hierarchical text classification tasks' solutions
A comparative study on two large-scale hierarchical text cla...
收藏 引用
International Conference on machine Learning and Cybernetics (ICMLC)
作者: Jian Zhang Hai Zhao Bao-Liang Lu Center of Brain-Like Computing and Machine Intelligence(ÇïêDepartment of Computer Science and Engineering Shanghai Jiaotong University Shanghai China MOE-Microsoft Key Laboratory of Intelligent Computing and Intelligent Systems Shanghai Jiaotong University Shanghai China
Patent classification is a large scale hierarchical text classification (LSHTC) task. Though comprehensive comparisons, either learning algorithms or feature selection strategies, have been fully made in the text cate... 详细信息
来源: 评论
A HSC-based sample selection method for support vector machine
A HSC-based sample selection method for support vector machi...
收藏 引用
International Conference on machine Learning and Cybernetics (ICMLC)
作者: Qing He Ning Li Zhong-Zhi Shi The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy and Sciences China Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding Hebei China Chinese Academy and Sciences China
Support Vector machine (SVM) is a classification technique of machine learning based on statistical learning theory. A quadratic optimization problem needs to be solved in the algorithm, and with the increase of the s... 详细信息
来源: 评论
Hedge detection and scope finding by sequence labeling with normalized feature selection
CoNLL-2010: Shared Task - Fourteenth Conference on Computat...
收藏 引用
CoNLL-2010: Shared Task - Fourteenth Conference on Computational Natural Language Learning, Proceedings of the Shared Task 2010年 92-99页
作者: Zhang, Shaodian Zhao, Hai Zhou, Guodong Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Dept of Computer Science and Engineering Shanghai Jiao Tong University China MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems Shanghai Jiao Tong University China School of Computer Science and Technology Soochow University China
This paper presents a system which adopts a standard sequence labeling technique for hedge detection and scope finding. For the first task, hedge detection, we formulate it as a hedge labeling problem, while for the s... 详细信息
来源: 评论
An executable business model for generic web applications
An executable business model for generic web applications
收藏 引用
Computer Information Systems and Industrial Management Applications (CISIM)
作者: Zhenxiang Chen Bo Yang Kun Ma Runyuan Sun Ajith Abraham Shandong Provincial Key Laboratory of Network Based Intelligent Computing University of Ji''nan Jinan China School of Computer Science and Technology Shandong University Jinan China Scientific Network of Innovation and Research Excellence Machine Intelligence Research Laboratories USA
In this paper, a novel platform-specific executable business model called xBM is proposed to sufficiently represent the business logic process. The metamodel of xBM have been analysed, formalised and illustrated. Trad... 详细信息
来源: 评论
Hybrid uniform distribution of particle swarm optimizer
收藏 引用
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 2010年 第10期E93-A卷 1782-1791页
作者: Zhang, Junqi Tan, Ying Ni, Lina Xie, Chen Tang, Zheng Department of Computer Science and Technology Key Laboratory of Embedded System and Service Computing Ministry of Education Qingdao China Tongji University Shanghai 200092 China Key Laboratory of Machine Perception Ministry of Education Qingdao China Department of Machine Intelligence School of Electronics Engineering and Computer Science Peking University Beijing 100871 China College of Info Sci and Engi Shandong University of Science and Technology Qingdao China Department of Intellectual Information Systems Engineering University of Toyama Toyama-shi 930-8555 Japan
Particle swarm optimizer (PSO) is a stochastic global optimization technique based on a social interaction metaphor. Because of the complexity, dynamics and randomness involved in PSO, it is hard to theoretically anal... 详细信息
来源: 评论