咨询与建议

限定检索结果

文献类型

  • 951 篇 会议
  • 604 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,557 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 952 篇 工学
    • 625 篇 计算机科学与技术...
    • 553 篇 软件工程
    • 185 篇 信息与通信工程
    • 182 篇 控制科学与工程
    • 155 篇 生物工程
    • 141 篇 生物医学工程(可授...
    • 129 篇 光学工程
    • 107 篇 机械工程
    • 97 篇 电气工程
    • 89 篇 电子科学与技术(可...
    • 68 篇 化学工程与技术
    • 56 篇 仪器科学与技术
    • 35 篇 交通运输工程
    • 34 篇 建筑学
    • 31 篇 材料科学与工程(可...
    • 31 篇 土木工程
    • 27 篇 动力工程及工程热...
    • 25 篇 力学(可授工学、理...
  • 554 篇 理学
    • 241 篇 数学
    • 206 篇 物理学
    • 167 篇 生物学
    • 81 篇 统计学(可授理学、...
    • 69 篇 化学
    • 46 篇 系统科学
  • 217 篇 管理学
    • 113 篇 图书情报与档案管...
    • 107 篇 管理科学与工程(可...
    • 21 篇 工商管理
  • 113 篇 医学
    • 103 篇 临床医学
    • 72 篇 基础医学(可授医学...
    • 57 篇 药学(可授医学、理...
  • 20 篇 法学
  • 11 篇 经济学
  • 11 篇 农学
  • 8 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 93 篇 feature extracti...
  • 63 篇 training
  • 49 篇 semantics
  • 41 篇 task analysis
  • 33 篇 accuracy
  • 32 篇 deep learning
  • 32 篇 electroencephalo...
  • 32 篇 computational mo...
  • 26 篇 object detection
  • 26 篇 visualization
  • 25 篇 semantic segment...
  • 24 篇 cameras
  • 24 篇 robustness
  • 23 篇 neural networks
  • 23 篇 predictive model...
  • 22 篇 conferences
  • 22 篇 generative adver...
  • 21 篇 support vector m...
  • 20 篇 machine learning
  • 20 篇 data models

机构

  • 240 篇 key laboratory o...
  • 194 篇 school of comput...
  • 81 篇 shenzhen college...
  • 79 篇 school of data a...
  • 76 篇 university of ch...
  • 73 篇 college of intel...
  • 69 篇 cas key laborato...
  • 64 篇 peng cheng labor...
  • 59 篇 guangdong provin...
  • 52 篇 tianjin key labo...
  • 44 篇 cas key laborato...
  • 41 篇 tianjin key labo...
  • 34 篇 guangdong-hong k...
  • 32 篇 tianjin key labo...
  • 31 篇 cas key laborato...
  • 31 篇 guangdong provin...
  • 29 篇 shenzhen institu...
  • 27 篇 key laboratory o...
  • 27 篇 anhui province k...
  • 27 篇 the chinese univ...

作者

  • 121 篇 zheng wei-shi
  • 80 篇 guanglin li
  • 58 篇 wu xinyu
  • 44 篇 wei-shi zheng
  • 42 篇 li guanglin
  • 39 篇 yunong zhang
  • 36 篇 xinyu wu
  • 35 篇 xie xiaohua
  • 28 篇 lai jianhuang
  • 28 篇 shixiong chen
  • 27 篇 fuji ren
  • 25 篇 lai jian-huang
  • 24 篇 mei yu
  • 24 篇 peng fang
  • 22 篇 oluwarotimi will...
  • 22 篇 lu bao-liang
  • 22 篇 ren fuji
  • 22 篇 wang xin
  • 21 篇 dang jianwu
  • 20 篇 wang longbiao

语言

  • 1,477 篇 英文
  • 71 篇 其他
  • 10 篇 中文
检索条件"机构=The Key Laboratory of Machine Intelligence and Advanced Computing"
1557 条 记 录,以下是281-290 订阅
排序:
A New Neurodynamics-Based Model-Less Fault-Tolerant Scheme for Redundant Robot Motion Planning and Control
SSRN
收藏 引用
SSRN 2023年
作者: Wang, Xin Tan, Ning Zhong, Zhaohui Huang, Kai School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Sun Yat-sen University Guangzhou China
For tasks utilizing redundant manipulators, there involves motion of a number of joints when performing tracking control. In some cases, one or a few of joints might fail and then result in task failure or even damage... 详细信息
来源: 评论
Advancements in Intelligent Photonics: The Role of Silicon Photonics and Phase Change Materials in High-Efficiency computing  15
Advancements in Intelligent Photonics: The Role of Silicon P...
收藏 引用
15th International Conference on Information Optics and Photonics, CIOP 2024
作者: Yun, Yiting Xu, Kai Wang, Weiquan Wei, Maoliang Li, Junying Chen, Zequn Li, Lan Lin, Hongtao The State Key Lab of Brain-Machine Intelligence Key Laboratory of Micro-Nano Electronics and Smart System of Zhejiang Province College of Information Science and Electronic Engineering Zhejiang University Zhejiang Hangzhou310027 China Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Zhejiang Hangzhou310024 China Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province School of Engineering Westlake University Zhejiang Hangzhou310030 China
Intelligent photonics, driven by silicon photonics, is revolutionizing high-speed data processing, low-power computing, and precision sensing. Leveraging these advances, photonic chips are enabling the development of ... 详细信息
来源: 评论
Slowly Expanding Neural Network for Class Incremental Learning
SSRN
收藏 引用
SSRN 2023年
作者: Xu, Zhengjin Li, Xuyang Chang, Xiaobin Zheng, Wei-Shi Wang, Ruixuan School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Department of Network Intelligence Pengcheng Laboratory Shenzhen China Key Laboratory of Machine Intelligence and Advanced Computing MOE Guangzhou China School of Artificial Intelligence Sun Yat-sen University Zhuhai China
Currently deep learning models often rapidly forget the knowledge of old classes when they are continually updated to learn knowledge of new classes. To alleviate such catastrophic forgetting issues, the state-of-the-... 详细信息
来源: 评论
Continual Learning with Bayesian Model based on a Fixed Pre-trained Feature Extractor
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Yang Cui, Zhiying Xu, Junjie Zhong, Changhong Zheng, Wei-Shi Wang, Ruixuan School of Computer Science and Engineering Sun Yat-Sen University China Key Laboratory of Machine Intelligence and Advanced Computing MOE China
Deep learning has shown its human-level performance in various applications. However, current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes. This poses a ... 详细信息
来源: 评论
A Method of Garbage Quantity Prediction Based on Population Change  12th
A Method of Garbage Quantity Prediction Based on Population ...
收藏 引用
12th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2022
作者: Yu, Qiumei Wan, Hongjie Ma, Junchen Li, Huakang Sun, Guozi Key Laboratory of Urban Land Resources Monitoring and Simulation MNR Shenzhen China School of Computer Science NUPT Nanjing China School of Artificial Intelligence and Advanced Computing XJTLU Suzhou China
Aiming at the problem that the amount of urban waste changes due to population changes and is difficult to predict, a method for predicting the amount of waste based on urban population changes is proposed. After anal... 详细信息
来源: 评论
The Enemy of My Enemy is My Friend: Exploring Inverse Adversaries for Improving Adversarial Training
The Enemy of My Enemy is My Friend: Exploring Inverse Advers...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Junhao Dong Seyed-Mohsen Moosavi-Dezfooli Jianhuang Lai Xiaohua Xie School of Computer Science and Engineering Sun Yat-Sen University China Imperial College London UK Guangdong Province Key Laboratory of Information Security Technology China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
Although current deep learning techniques have yielded superior performance on various computer vision tasks, yet they are still vulnerable to adversarial examples. Adversarial training and its variants have been show...
来源: 评论
Event-Triggered Group Attitude Coordinated Control of Multi-spacecraft System with Directed Topology
Event-Triggered Group Attitude Coordinated Control of Multi-...
收藏 引用
International Conference on Guidance, Navigation and Control, ICGNC 2020
作者: Zhou, Shaolei Wang, Shuailei Liu, Wei Wang, Donglai Gao, Xiangyang Naval Aviation University Yantai Shandong264001 China CAS Key Laboratory of human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Science Shenzhen518055 China
Event-triggered group attitude coordinated control of multi-spacecraft system with directed topology is studied. The event-triggered strategy ensures that the system communicate at discrete time instants, thus the com... 详细信息
来源: 评论
Class-distribution-aware pseudo-labeling for semi-supervised multi-label learning  23
Class-distribution-aware pseudo-labeling for semi-supervised...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Ming-Kun Xie Jia-Hao Xiao Hao-Zhe Liu Gang Niu Masashi Sugiyama Sheng-Jun Huang Nanjing University of Aeronautics and Astronautics and MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China RIKEN Center for Advanced Intelligence Project RIKEN Center for Advanced Intelligence Project and The University of Tokyo Tokyo Japan
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data. However, in the context of semi-supervised multi-label learning (SSMLL), conventional pseudo-labeling methods encounter dif...
来源: 评论
Finding Emotional Focus for Emotion Recognition at Sentence Level
收藏 引用
Chinese Journal of Electronics 2023年 第1期22卷 99-103页
作者: Changqin Quan Fuji Ren Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machine Hefei University of Technology Hefei China Faculty of Engineering The University of Tokushima Tokushima Japan
Emotion recognition at sentence level is one of the fundamental problems of textual emotion understanding. Based on the observation that sentence emotional focus can be expressed by some clauses in this sentence, this... 详细信息
来源: 评论
Skeleton-Embedded Network for action recognition
Skeleton-Embedded Network for action recognition
收藏 引用
2023 IEEE International Conference on Real-Time computing and Robotics, RCAR 2023
作者: Luo, Li Ren, Ziliang Qin, Yong Zhang, Qieshi Gao, Xiangyang Dongguan University of Technology Department of Computer Science Dongguan52300 China Chinese Academy of Sciences Cas Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology Shenzhen518055 China The Chinese University of HongKong Hong Kong Hong Kong
Multimodality-based human action recognition is becoming an increasingly attractive topic as different modalities can provide complementary information. RGB and skeleton data have their pros and limitations for action... 详细信息
来源: 评论