咨询与建议

限定检索结果

文献类型

  • 965 篇 会议
  • 618 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 980 篇 工学
    • 644 篇 计算机科学与技术...
    • 559 篇 软件工程
    • 197 篇 控制科学与工程
    • 188 篇 信息与通信工程
    • 157 篇 生物工程
    • 142 篇 生物医学工程(可授...
    • 130 篇 光学工程
    • 108 篇 机械工程
    • 102 篇 电气工程
    • 90 篇 电子科学与技术(可...
    • 69 篇 化学工程与技术
    • 57 篇 仪器科学与技术
    • 35 篇 交通运输工程
    • 34 篇 建筑学
    • 33 篇 材料科学与工程(可...
    • 31 篇 土木工程
    • 27 篇 动力工程及工程热...
    • 25 篇 力学(可授工学、理...
  • 563 篇 理学
    • 244 篇 数学
    • 210 篇 物理学
    • 169 篇 生物学
    • 81 篇 统计学(可授理学、...
    • 70 篇 化学
    • 46 篇 系统科学
  • 219 篇 管理学
    • 113 篇 图书情报与档案管...
    • 109 篇 管理科学与工程(可...
    • 22 篇 工商管理
  • 113 篇 医学
    • 103 篇 临床医学
    • 72 篇 基础医学(可授医学...
    • 57 篇 药学(可授医学、理...
  • 20 篇 法学
  • 11 篇 经济学
  • 11 篇 农学
  • 8 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 94 篇 feature extracti...
  • 63 篇 training
  • 49 篇 semantics
  • 41 篇 task analysis
  • 33 篇 accuracy
  • 32 篇 deep learning
  • 32 篇 electroencephalo...
  • 32 篇 computational mo...
  • 26 篇 object detection
  • 26 篇 visualization
  • 25 篇 semantic segment...
  • 24 篇 cameras
  • 24 篇 robustness
  • 23 篇 neural networks
  • 23 篇 predictive model...
  • 22 篇 conferences
  • 22 篇 generative adver...
  • 21 篇 support vector m...
  • 20 篇 machine learning
  • 20 篇 data models

机构

  • 245 篇 key laboratory o...
  • 199 篇 school of comput...
  • 81 篇 shenzhen college...
  • 79 篇 school of data a...
  • 76 篇 university of ch...
  • 74 篇 college of intel...
  • 70 篇 cas key laborato...
  • 66 篇 peng cheng labor...
  • 61 篇 guangdong provin...
  • 52 篇 tianjin key labo...
  • 44 篇 cas key laborato...
  • 41 篇 tianjin key labo...
  • 34 篇 guangdong-hong k...
  • 33 篇 tianjin key labo...
  • 31 篇 shenzhen institu...
  • 31 篇 cas key laborato...
  • 31 篇 guangdong provin...
  • 27 篇 key laboratory o...
  • 27 篇 sun yat-sen univ...
  • 27 篇 the chinese univ...

作者

  • 125 篇 zheng wei-shi
  • 80 篇 guanglin li
  • 59 篇 wu xinyu
  • 44 篇 wei-shi zheng
  • 43 篇 li guanglin
  • 39 篇 yunong zhang
  • 36 篇 xinyu wu
  • 36 篇 xie xiaohua
  • 29 篇 lai jianhuang
  • 28 篇 shixiong chen
  • 27 篇 fuji ren
  • 25 篇 lai jian-huang
  • 24 篇 mei yu
  • 24 篇 peng fang
  • 23 篇 dang jianwu
  • 23 篇 wang xin
  • 22 篇 oluwarotimi will...
  • 22 篇 lu bao-liang
  • 22 篇 wang longbiao
  • 22 篇 ren fuji

语言

  • 1,452 篇 英文
  • 124 篇 其他
  • 11 篇 中文
检索条件"机构=The Key Laboratory of Machine Intelligence and Advanced Computing"
1585 条 记 录,以下是341-350 订阅
排序:
Fine-Grained Depth Knowledge Distillation for Cloth-Changing Person Re-identification
Fine-Grained Depth Knowledge Distillation for Cloth-Changing...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Yuhan Yao Jiawei Feng Ancong Wu Jiangqun Ni Wei-Shi Zheng School of Computer Science and Engineering Sun Yat-sen University China School of Cyber Science and Technology Sun Yat-sen University Shenzhen China Department of New Networks Peng Cheng Laboratory Shenzhen China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Guangdong Key Laboratory of Information Security Technology China
The mission of cloth-changing person re-identification (CC-ReID) is to discover cloth-invariant and identity-related cues, while traditional person ReID methods rely on appearance features that are biased to cloth-rel... 详细信息
来源: 评论
Label Correlation Guided Feature Selection for Multi-label Learning  9th
Label Correlation Guided Feature Selection for Multi-label ...
收藏 引用
19th International Conference on advanced Data Mining and Applications, ADMA 2023
作者: Zhang, Kai Liang, Wei Cao, Peng Yang, Jinzhu Li, Weiping Zaiane, Osmar R. Computer Science and Engineering Northeastern University Shenyang China Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education Northeastern University Shenyang China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang110819 China School of Software and Microelectronics Peking University Beijing China Alberta Machine Intelligence Institute University of Alberta EdmontonAB Canada
Multi-label learning has received much attention due to its wide range of application domains. Multi-label data often has high-dimensional features, which brings more challenges to classification algorithms. Feature s... 详细信息
来源: 评论
A Prompt Learning Framework with Large Language Model Augmentation for Few-shot Multi-label Intent Detection
A Prompt Learning Framework with Large Language Model Augmen...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Ning Zhuang Xiao Wei Junlei Li Xiaobao Wang Chenyang Wang Longbiao Wang Jianwu Dang Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin China Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen China Huiyan Technology (Tianjin) Co. Ltd Tianjin China Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China
Intent detection (ID) is essential in spoken language understanding, especially in multi-label settings where intent labels are interdependent and diverse. Existing methods like SE-MLP and QA-FT struggle in few-shot s... 详细信息
来源: 评论
Progressive Human Motion Generation Based on Text and Few Motion Frames
arXiv
收藏 引用
arXiv 2025年
作者: Zeng, Ling-An Wu, Gaojie Wu, Ancong Hu, Jian-Fang Zheng, Wei-Shi School of Artificial Intelligence Sun Yat-sen University Guangdong Zhuhai519082 China School of Computer Science and Engineering Sun Yat-sen University Guangdong Guangzhou510275 China School of Computer Science and Engineering Sun Yat-sen University China The Guangdong Key Laboratory of Information Security Technology China The Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Peng Cheng Laboratory China
Although existing text-to-motion (T2M) methods can produce realistic human motion from text description, it is still difficult to align the generated motion with the desired postures since using text alone is insuffic... 详细信息
来源: 评论
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Language-Image Pre-Training  24
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Lang...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Li, Yudong Hou, Xianxu Dezhi, Zheng Shen, Linlin Zhao, Zhe School of Computer Science and Software Engineering Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Tencent AI Lab Beijing China
While significant progress has been made in multi-modal learning driven by large-scale image-text datasets, there is still a noticeable gap in the availability of such datasets within the facial domain. To facilitate ... 详细信息
来源: 评论
Enriching Multimodal Sentiment Analysis Through Textual Emotional Descriptions of Visual-Audio Content  39
Enriching Multimodal Sentiment Analysis Through Textual Emot...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Wu, Sheng He, Dongxiao Wang, Xiaobao Wang, Longbiao Dang, Jianwu School of New Media and Communication Tianjin University Tianjin China Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen China Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin China Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China
Multimodal Sentiment Analysis (MSA) stands as a critical research frontier, seeking to comprehensively unravel human emotions by amalgamating text, audio, and visual data. Yet, discerning subtle emotional nuances with... 详细信息
来源: 评论
CORE-TEXT: IMPROVING SCENE TEXT DETECTION WITH CONTRASTIVE RELATIONAL REASONING
CORE-TEXT: IMPROVING SCENE TEXT DETECTION WITH CONTRASTIVE R...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Lin, Jingyang Pan, Yingwei Lai, Rongfeng Yang, Xuehang Chao, Hongyang Yao, Ting Sun Yat-sen University Guangzhou China The Key Laboratory of Machine Intelligence and Advanced Computing Sun Yat-sen University Ministry of Education Guangzhou China JD AI Research Beijing China
Localizing text instances in natural scenes is regarded as a fundamental challenge in computer vision. Nevertheless, owing to the extremely varied aspect ratios and scales of text instances in real scenes, most conven... 详细信息
来源: 评论
A Neuroinspired Contrast Mechanism Enables Few-Shot Object Detection
SSRN
收藏 引用
SSRN 2023年
作者: Yang, Lingxiao Chen, Dapeng Chen, Yifei Peng, Wei Xie, Xiaohua School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangdong Province Key Laboratory of Information Security Technology Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Guangzhou China Huawei Technlogies Shenzhen China
Object detectors based on deep neural networks often require a large number of annotated images for training. In the most realistic scenario, only a few training data are available;thus, Few-Shot Object Detection (FSO... 详细信息
来源: 评论
Resampling Factor Estimation via Dual-Stream Convolutional Neural Network
收藏 引用
Computers, Materials & Continua 2021年 第1期66卷 647-657页
作者: Shangjun Luo Junwei Luo Wei Lu Yanmei Fang Jinhua Zeng Shaopei Shi Yue Zhang School of Data and Computer Science Guangdong Province Key Laboratory of Information Security TechnologyMinistry of Education Key Laboratory of Machine Intelligence and Advanced ComputingSun Yat-sen UniversityGuangzhou510006China Academy of Forensic Science Shanghai200063China College of Information Science and Technology Jinan UniversityGuangzhou510632China Department of Computer Science University of Massachusetts LowellLowellMA 01854USA
The estimation of image resampling factors is an important problem in image *** all the resampling factor estimation methods,spectrumbased methods are one of the most widely used methods and have attracted a lot of re... 详细信息
来源: 评论
Focus, Distinguish, and Prompt: Unleashing CLIP for Efficient and Flexible Scene Text Retrieval  24
Focus, Distinguish, and Prompt: Unleashing CLIP for Efficien...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Zeng, Gangyan Zhang, Yuan Wei, Jin Yang, Dongbao Zhang, Peng Gao, Yiwen Qin, Xugong Zhou, Yu School of Cyber Science and Engineering Nanjing University of Science and Technology Nanjing China State Key Laboratory of Media Convergence and Communication Communication University of China Beijing China Lenovo Research Beijing China Institute of Information Engineering Chinese Academy of Sciences Beijing China Laboratory for Advanced Computing and Intelligence Engineering Wuxi China TMCC College of Computer Science Nankai University Tianjin China
Scene text retrieval aims to find all images containing the query text from an image gallery. Current efforts tend to adopt an Optical Character Recognition (OCR) pipeline, which requires complicated text detection an... 详细信息
来源: 评论