咨询与建议

限定检索结果

文献类型

  • 965 篇 会议
  • 618 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 980 篇 工学
    • 644 篇 计算机科学与技术...
    • 559 篇 软件工程
    • 197 篇 控制科学与工程
    • 188 篇 信息与通信工程
    • 157 篇 生物工程
    • 142 篇 生物医学工程(可授...
    • 130 篇 光学工程
    • 108 篇 机械工程
    • 102 篇 电气工程
    • 90 篇 电子科学与技术(可...
    • 69 篇 化学工程与技术
    • 57 篇 仪器科学与技术
    • 35 篇 交通运输工程
    • 34 篇 建筑学
    • 33 篇 材料科学与工程(可...
    • 31 篇 土木工程
    • 27 篇 动力工程及工程热...
    • 25 篇 力学(可授工学、理...
  • 563 篇 理学
    • 244 篇 数学
    • 210 篇 物理学
    • 169 篇 生物学
    • 81 篇 统计学(可授理学、...
    • 70 篇 化学
    • 46 篇 系统科学
  • 219 篇 管理学
    • 113 篇 图书情报与档案管...
    • 109 篇 管理科学与工程(可...
    • 22 篇 工商管理
  • 113 篇 医学
    • 103 篇 临床医学
    • 72 篇 基础医学(可授医学...
    • 57 篇 药学(可授医学、理...
  • 20 篇 法学
  • 11 篇 经济学
  • 11 篇 农学
  • 8 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 94 篇 feature extracti...
  • 63 篇 training
  • 49 篇 semantics
  • 41 篇 task analysis
  • 33 篇 accuracy
  • 32 篇 deep learning
  • 32 篇 electroencephalo...
  • 32 篇 computational mo...
  • 26 篇 object detection
  • 26 篇 visualization
  • 25 篇 semantic segment...
  • 24 篇 cameras
  • 24 篇 robustness
  • 23 篇 neural networks
  • 23 篇 predictive model...
  • 22 篇 conferences
  • 22 篇 generative adver...
  • 21 篇 support vector m...
  • 20 篇 machine learning
  • 20 篇 data models

机构

  • 245 篇 key laboratory o...
  • 199 篇 school of comput...
  • 81 篇 shenzhen college...
  • 79 篇 school of data a...
  • 76 篇 university of ch...
  • 74 篇 college of intel...
  • 70 篇 cas key laborato...
  • 66 篇 peng cheng labor...
  • 61 篇 guangdong provin...
  • 52 篇 tianjin key labo...
  • 44 篇 cas key laborato...
  • 41 篇 tianjin key labo...
  • 34 篇 guangdong-hong k...
  • 33 篇 tianjin key labo...
  • 31 篇 shenzhen institu...
  • 31 篇 cas key laborato...
  • 31 篇 guangdong provin...
  • 27 篇 key laboratory o...
  • 27 篇 sun yat-sen univ...
  • 27 篇 the chinese univ...

作者

  • 125 篇 zheng wei-shi
  • 80 篇 guanglin li
  • 59 篇 wu xinyu
  • 44 篇 wei-shi zheng
  • 43 篇 li guanglin
  • 39 篇 yunong zhang
  • 36 篇 xinyu wu
  • 36 篇 xie xiaohua
  • 29 篇 lai jianhuang
  • 28 篇 shixiong chen
  • 27 篇 fuji ren
  • 25 篇 lai jian-huang
  • 24 篇 mei yu
  • 24 篇 peng fang
  • 23 篇 dang jianwu
  • 23 篇 wang xin
  • 22 篇 oluwarotimi will...
  • 22 篇 lu bao-liang
  • 22 篇 wang longbiao
  • 22 篇 ren fuji

语言

  • 1,452 篇 英文
  • 124 篇 其他
  • 11 篇 中文
检索条件"机构=The Key Laboratory of Machine Intelligence and Advanced Computing"
1585 条 记 录,以下是391-400 订阅
排序:
Evoking and Evaluation of Non-invasive Sensory Feedback for Applications in Neural Rehabilitation: A Pilot Study
Evoking and Evaluation of Non-invasive Sensory Feedback for ...
收藏 引用
2023 IEEE International Conference on Real-Time computing and Robotics, RCAR 2023
作者: Dong, Yuanzhe Tang, Xi Jiang, Naifu Xie, Jun Liang, Wenyuan Shang, Peng Li, Guanglin Fang, Peng Chinese Academy of Sciences Cas Key Laboratory of Human-Machine Intelligence-Synergy Systems The Shenzhen Engineering Laboratory of Neural Rehabilitation Technology Shenzhen Institute of Advanced Technology Shenzhen518055 China University of Chinese Academy of Sciences Shenzhen College of Advanced Technology Shenzhen518055 China Xi'an Jiaotong University School of Mechanical Engineering Xi'an710049 China National Research Center for Rehabilitation Technical Aids Beijing100176 China
Protheses are very useful for limb amputees to restore their lost motor functions. However, most commercially available prostheses lack an intuitive and natural sensory feedback function, which may strongly limit the ... 详细信息
来源: 评论
Micromesh reinforced strain sensor with high stretchability and stability for full-range and periodic human motions monitoring
收藏 引用
InfoMat 2024年 第4期6卷 124-139页
作者: Haidong Liu Chang Liu Jinan Luo Hao Tang Yuanfang Li Houfang Liu Jingzhi Wu Fei Han Zhiyuan Liu Jianhe Guo Rongwei Tan Tian-Ling Ren Yancong Qiao Jianhua Zhou School of Biomedical Engineering Shenzhen Campus of Sun Yat-sen UniversityShenzhenGuangdongthe People's Republic of China Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province School of Biomedical EngineeringSun Yat-sen UniversityGuangzhouthe People's Republic of China School of Integrated Circuits and Beijing National Research Center for Information Science and Technology(BNRist) Tsinghua UniversityBeijingthe People's Republic of China CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences(CAS)Shenzhenthe People's Republic of China Guangdong Engineering Technology Research Center of Implantable Medical Polymer Shenzhen Lando Biomaterials Co.Ltd.Shenzhenthe People's Republic of China
The development of strain sensors with high stretchability and stability is an inevitable requirement for achieving full-range and long-term use of wearable electronic ***,a resistive micromesh reinforced strain senso... 详细信息
来源: 评论
Area Intervention for Enhancing Class Activation Maps in Weakly Supervised Semantic Segmentation
Area Intervention for Enhancing Class Activation Maps in Wea...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Xuewei Li Yujie Diao Mei Yu Chenhan Wang Jie Gao Ruiguo Yu College of Intelligence and Computing Tianjin University Tianjin China Tianjin Key Laboratory of Cognitive Computing and Application Tianjin China Tianjin Key Laboratory of Advanced Networking Tianjin China School of Feature Technology Tianjin University Tianjin China OpenBayes (Tianjin) IT Co. Ltd. Tianjin China
Generating class activation maps (CAM) as seed regions is a crucial step in weakly supervised semantic segmentation (WSSS). During the training of classification models, instance area information is incorporated into ... 详细信息
来源: 评论
Multi-Level Augmentation Consistency Learning and Sample Selection for Semi-Supervised Domain Generalization
Multi-Level Augmentation Consistency Learning and Sample Sel...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Mei Yu Yujian Zhang Xuewei Li Ruixuan Zhang Han Jiang Jie Gao Zhiqiang Liu College of Intelligence and Computing Tianjin University Tianjin China Tianjin Key Laboratory of Cognitive Computing and Application Tianjin China Tianjin Key Laboratory of Advanced Networking Tianjin China School of Future Technology Tianjin University Tianjin China OpenBayes (Tianjin) IT Co. Ltd. Tianjin China
Semi-supervised domain generalization (SSDG) aims to build a domain-generalized model using partially labeled data from source domains. Mainstream SSDG methods follow the augmentation consistency in FixMatch. However,...
来源: 评论
Learning to Imagine: Diversify Memory for Incremental Learning using Unlabeled Data
arXiv
收藏 引用
arXiv 2022年
作者: Tang, Yu-Ming Peng, Yi-Xing Zheng, Wei-Shi School of Computer Science and Engineering Sun Yat-Sen University China Peng Cheng Laboratory Shenzhen China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
Deep neural network (DNN) suffers from catastrophic forgetting when learning incrementally, which greatly limits its applications. Although maintaining a handful of samples (called "exemplars") of each task ... 详细信息
来源: 评论
Unsupervised Domain Adaptation Semantic Segmentation on Thyroid Ultrasound Images Based on Task-Oriented Feature Disentanglement
Unsupervised Domain Adaptation Semantic Segmentation on Thyr...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Zijian Zhang Ruiguo Yu Xi Wei Jie Gao Mei Yu Xuewei Li Zhiqiang Liu College of Intelligence and Computing Tianjin University Tianjin China Tianjin Key Laboratory of Cognitive Computing and Application Tianjin China Tianjin Key Laboratory of Advanced Networking Tianjin China School of Feature Technology Tianjin University Tianjin China Tianjin Medical University Cancer Institute and Hospital Tianjin China
Unsupervised Domain Adaptation (UDA) methods have become essential for computer-aided diagnostic analysis on medical images due to the advantage of improving the model generalization ability with fewer annotations. Th... 详细信息
来源: 评论
Balanced And Discriminative Contrastive Learning For Class-Imbalanced Medical Images
Balanced And Discriminative Contrastive Learning For Class-I...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Xuewei Li Yilong Fan Hao Zheng Jie Gao Xi Wei Mei Yu College of Intelligence and Computing Tianjin University Tianjin China Tianjin Key Laboratory of Cognitive Computing and Application Tianjin China Tianjin Key Laboratory of Advanced Networking Tianjin China School of Feature Technology Tianjin University Tianjin China Tianjin Medical University Cancer Institute and Hospital Tianjin China
The class imbalance problem, which is prevalent in medical image datasets, seriously affects the diagnostic effectiveness of deep learning-based network models. Recently, the method based on two-stage learning has pro...
来源: 评论
Remolding Semantic Focus with Dual Attention Mechanism for Aspect-based Sentiment Analysis  8
Remolding Semantic Focus with Dual Attention Mechanism for A...
收藏 引用
8th IEEE International Conference on Cloud computing and intelligence Systems, CCIS 2022
作者: Li, Xingda Bao, Yanwei Hu, Min Ren, Fuji Hefei University of Technology Hefei Anhui230009 China Hefei University of Technology Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machine China University of Electronic Science and Technology of China Chengdu Chengdu611730 China
Aspect-based sentiment analysis (ABSA) is an NLP task that classify fine-grained sentiment towards one specific aspect from the same text. While attention mechanism has achieved great success, attaching aspects to abs... 详细信息
来源: 评论
Cross-camera Trajectories Help Person Retrieval in a Camera Network
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Xin Xie, Xiaohua Lai, Jianhuang Zheng, Wei-Shi The School of Computer Science and Engineering The Guangdong Province Key Laboratory of Information Security Technology The Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Sun Yat-sen University Guangzhou510006 China
We are concerned with retrieving a query person from multiple videos captured by a non-overlapping camera network. Existing methods often rely on purely visual matching or consider temporal constraints but ignore the ... 详细信息
来源: 评论
Adversarial Feature Augmentation for Cross-domain Few-shot Classification
arXiv
收藏 引用
arXiv 2022年
作者: Hu, Yanxu Ma, Andy J. School of Computer Science and Engineering Sun Yat-sen University China Guangdong Province Key Laboratory of Information Security Technology China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
Few-shot classification is a promising approach to solving the problem of classifying novel classes with only limited annotated data for training. Existing methods based on meta-learning predict novel-class labels for... 详细信息
来源: 评论