咨询与建议

限定检索结果

文献类型

  • 965 篇 会议
  • 618 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 980 篇 工学
    • 644 篇 计算机科学与技术...
    • 559 篇 软件工程
    • 197 篇 控制科学与工程
    • 188 篇 信息与通信工程
    • 157 篇 生物工程
    • 142 篇 生物医学工程(可授...
    • 130 篇 光学工程
    • 108 篇 机械工程
    • 102 篇 电气工程
    • 90 篇 电子科学与技术(可...
    • 69 篇 化学工程与技术
    • 57 篇 仪器科学与技术
    • 35 篇 交通运输工程
    • 34 篇 建筑学
    • 33 篇 材料科学与工程(可...
    • 31 篇 土木工程
    • 27 篇 动力工程及工程热...
    • 25 篇 力学(可授工学、理...
  • 563 篇 理学
    • 244 篇 数学
    • 210 篇 物理学
    • 169 篇 生物学
    • 81 篇 统计学(可授理学、...
    • 70 篇 化学
    • 46 篇 系统科学
  • 219 篇 管理学
    • 113 篇 图书情报与档案管...
    • 109 篇 管理科学与工程(可...
    • 22 篇 工商管理
  • 113 篇 医学
    • 103 篇 临床医学
    • 72 篇 基础医学(可授医学...
    • 57 篇 药学(可授医学、理...
  • 20 篇 法学
  • 11 篇 经济学
  • 11 篇 农学
  • 8 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 94 篇 feature extracti...
  • 63 篇 training
  • 49 篇 semantics
  • 41 篇 task analysis
  • 33 篇 accuracy
  • 32 篇 deep learning
  • 32 篇 electroencephalo...
  • 32 篇 computational mo...
  • 26 篇 object detection
  • 26 篇 visualization
  • 25 篇 semantic segment...
  • 24 篇 cameras
  • 24 篇 robustness
  • 23 篇 neural networks
  • 23 篇 predictive model...
  • 22 篇 conferences
  • 22 篇 generative adver...
  • 21 篇 support vector m...
  • 20 篇 machine learning
  • 20 篇 data models

机构

  • 245 篇 key laboratory o...
  • 199 篇 school of comput...
  • 81 篇 shenzhen college...
  • 79 篇 school of data a...
  • 76 篇 university of ch...
  • 74 篇 college of intel...
  • 70 篇 cas key laborato...
  • 66 篇 peng cheng labor...
  • 61 篇 guangdong provin...
  • 52 篇 tianjin key labo...
  • 44 篇 cas key laborato...
  • 41 篇 tianjin key labo...
  • 34 篇 guangdong-hong k...
  • 33 篇 tianjin key labo...
  • 31 篇 shenzhen institu...
  • 31 篇 cas key laborato...
  • 31 篇 guangdong provin...
  • 27 篇 key laboratory o...
  • 27 篇 sun yat-sen univ...
  • 27 篇 the chinese univ...

作者

  • 125 篇 zheng wei-shi
  • 80 篇 guanglin li
  • 59 篇 wu xinyu
  • 44 篇 wei-shi zheng
  • 43 篇 li guanglin
  • 39 篇 yunong zhang
  • 36 篇 xinyu wu
  • 36 篇 xie xiaohua
  • 29 篇 lai jianhuang
  • 28 篇 shixiong chen
  • 27 篇 fuji ren
  • 25 篇 lai jian-huang
  • 24 篇 mei yu
  • 24 篇 peng fang
  • 23 篇 dang jianwu
  • 23 篇 wang xin
  • 22 篇 oluwarotimi will...
  • 22 篇 lu bao-liang
  • 22 篇 wang longbiao
  • 22 篇 ren fuji

语言

  • 1,452 篇 英文
  • 124 篇 其他
  • 11 篇 中文
检索条件"机构=The Key Laboratory of Machine Intelligence and Advanced Computing"
1585 条 记 录,以下是511-520 订阅
排序:
ElasticShare: Ridesharing Order Dispatching with Dynamic Supply-demand Distribution
ElasticShare: Ridesharing Order Dispatching with Dynamic Sup...
收藏 引用
International Workshop on Quality of Service
作者: Shuxin Ge Xiaobo Zhou Tie Qiu Guobin Wu Xiaotong Wang Tianjin Key Laboratory of Advanced Networking (TANK) College of Intelligence and Computing Tianjin University Tianjin China Beijing DiDi Infinity Technology and Development Co. Ltd. Beijing China
The mobility on demand (MoD) system relieves traffic pressure by simultaneously dispatching multiple orders to a vehicle via ridesharing. However, since the supply-demand distribution varies over time, existing dispat...
来源: 评论
CoMT: A Novel Benchmark for Chain of Multi-modal Thought on Large Vision-Language Models  39
CoMT: A Novel Benchmark for Chain of Multi-modal Thought on ...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Cheng, Zihui Chen, Qiguang Zhang, Jin Fei, Hao Feng, Xiaocheng Che, Wanxiang Li, Min Qin, Libo School of Computer Science and Engineering Central South University China Key Laboratory of Data Intelligence and Advanced Computing in Provincial Universities Soochow University China Research Center for SCIR Harbin Institute of Technology Harbin China National University of Singapore Singapore
Large Vision-Language Models (LVLMs) have recently demonstrated amazing success in multi-modal tasks, including advancements in Multi-modal Chain-of-Thought (MCoT) reasoning. Despite these successes, current benchmark... 详细信息
来源: 评论
Task-oriented Self-supervised Learning for Anomaly Detection in Electroencephalography
arXiv
收藏 引用
arXiv 2022年
作者: Zheng, Yaojia Liu, Zhouwu Mo, Rong Chen, Ziyi Zheng, Wei-Shi Wang, Ruixuan School of Computer Science and Engineering Sun Yat-sen University China Key Laboratory of Machine Intelligence and Advanced Computing MOE China The First Affiliated Hospital Sun Yat-sen University Guangzhou China
Accurate automated analysis of electroencephalography (EEG) would largely help clinicians effectively monitor and diagnose patients with various brain diseases. Compared to supervised learning with labelled disease EE... 详细信息
来源: 评论
Deterministic Algorithms for the Hidden Subgroup Problem
SSRN
收藏 引用
SSRN 2022年
作者: Ye, Zekun Li, Lvzhou Institute of Quantum Computing and Computer Theory School of Computer Science and Engineering Sun Yat-sen University Guangzhou510006 China Ministry of Education Key Laboratory of Machine Intelligence and Advanced Computing Sun Yat-sen University Guangzhou510006 China
We consider deterministic algorithms for the well-known hidden subgroup problem (HSP): for a finite group G and a finite set X, given a function f : G → X and the promise that for any (Formula Presented) for a subgro... 详细信息
来源: 评论
A convolutional generative adversarial framework for data augmentation based on a robust optimal transport metric  23
A convolutional generative adversarial framework for data au...
收藏 引用
23rd IEEE International Conference on High Performance computing and Communications, 7th IEEE International Conference on Data Science and Systems, 19th IEEE International Conference on Smart City and 7th IEEE International Conference on Dependability in Sensor, Cloud and Big Data Systems and Applications, HPCC-DSS-SmartCity-DependSys 2021
作者: Su, Liyilei Fu, Xianjun Hu, Qingmao Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Zhejiang College of Security Technology Wenzhou325016 China Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Cas Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen518055 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100049 China
Enhancement of the vanilla generative adversarial network (GAN) to preserve data variability in the presence of real world noise is of paramount significance in deep learning. In this study, we proposed a new distance... 详细信息
来源: 评论
Conditional Image Hiding Network Based on Style Transfer
SSRN
收藏 引用
SSRN 2023年
作者: Zhang, Fenghua Feng, Bingwen Xia, Zhihua Weng, Jian Lu, Wei Chen, Bin College of Information Science and Technology Jinan University Guangzhou510632 China School of Computer Science and Engineering Guangdong Province Key Laboratory of Information Security Technology Ministry of Education Key Laboratory of Machine Intelligence and Advanced Computing Sun Yat-sen University Guangzhou510006 China School of Cyber Security Guangdong Polytechnic Normal University Guangzhou510665 China
Various data hiding methods have been suggested to hide secret images within stego images. However, many of them could be easily detected by steganalytic tools due to their large hiding information. In this paper, we ... 详细信息
来源: 评论
cRVR: A Cache-Friendly Approach to Enhancing Request Privacy for Online Video Services
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Xianzhi Xiao, Linchang Zhou, Yipeng Hu, Miao Wu, Di Lui, John C.S. Sheng, Quan Z. School of Computer Science and Engineering Sun Yat-sen University Guangzhou510006 China The Key Laboratory of Machine Intelligence and Advanced Computing Sun Yat-sen University Ministry of Education China School of Computing Faculty of Science and Engineering Macquarie University 2122 Australia Department of Computer Science & Engineering Chinese University of Hong Kong Hong Kong
—As users conveniently stream their favorite online videos, video request records are automatically stored by video content providers, which have a high chance of privacy leakage. Unfortunately, most existing privacy... 详细信息
来源: 评论
An Efficient Deep Transfer Learning Network for Characterization of Stroke Patients’ Motor Execution from Multi-Channel EEG-Recordings
An Efficient Deep Transfer Learning Network for Characteriza...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Oluwarotimi Williams Samuel Mojisola Grace Asogbon Frank Kulwa Alistair A. McEwan Sunday Timothy Aboyeji Rami Khushaba Peng Fang Guanglin Li School of Computing and Data Science Research Centre University of Derby Derby United Kingdom Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences (CAS) Shenzhen China CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems SIAT-CAS Shenzhen China Australian Centre for Field Robotics Sydney University Chippendale NSW Australia
Recent advances in stroke rehabilitation technology have been focused on developing Intelligent Rehabilitation Robots (IRR) that can effectively engage post-stroke patients (PSP) in intuitive motor training for full f... 详细信息
来源: 评论
ESNet: evolution and succession network for high-resolution salient object detection  24
ESNet: evolution and succession network for high-resolution ...
收藏 引用
Proceedings of the 41st International Conference on machine Learning
作者: Hongyu Liu Runmin Cong Hua Li Qianqian Xu Qingming Huang Wei Zhang Institute of Information Science Beijing Jiaotong University & Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing China School of Control Science and Engineering Shandong University & Key Laboratory of Machine Intelligence and System Control Ministry of Education Jinan China School of Computer Science and Technology Hainan University Hainan China Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China
Preserving details and avoiding high computational costs are the two main challenges for the High-Resolution Salient Object Detection (HRSOD) task. In this paper, we propose a two-stage HRSOD model from the perspectiv...
来源: 评论
Size-Invariance Matters: Rethinking Metrics and Losses for Imbalanced Multi-object Salient Object Detection  41
Size-Invariance Matters: Rethinking Metrics and Losses for I...
收藏 引用
41st International Conference on machine Learning, ICML 2024
作者: Li, Feiran Xu, Qianqian Bao, Shilong Yang, Zhiyong Cong, Runmin Cao, Xiaochun Huang, Qingming Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Institute of Information Science Beijing Jiaotong University Beijing China School of Control Science and Engineering Shandong University Jinan China Key Laboratory of Machine Intelligence and System Control Ministry of Education Jinan China School of Cyber Science and Tech. Sun Yat-sen University Shenzhen Campus China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
This paper explores the size-invariance of evaluation metrics in Salient Object Detection (SOD), especially when multiple targets of diverse sizes co-exist in the same image. We observe that current metrics are size-s... 详细信息
来源: 评论