咨询与建议

限定检索结果

文献类型

  • 965 篇 会议
  • 618 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 980 篇 工学
    • 644 篇 计算机科学与技术...
    • 559 篇 软件工程
    • 197 篇 控制科学与工程
    • 188 篇 信息与通信工程
    • 157 篇 生物工程
    • 142 篇 生物医学工程(可授...
    • 130 篇 光学工程
    • 108 篇 机械工程
    • 102 篇 电气工程
    • 90 篇 电子科学与技术(可...
    • 69 篇 化学工程与技术
    • 57 篇 仪器科学与技术
    • 35 篇 交通运输工程
    • 34 篇 建筑学
    • 33 篇 材料科学与工程(可...
    • 31 篇 土木工程
    • 27 篇 动力工程及工程热...
    • 25 篇 力学(可授工学、理...
  • 563 篇 理学
    • 244 篇 数学
    • 210 篇 物理学
    • 169 篇 生物学
    • 81 篇 统计学(可授理学、...
    • 70 篇 化学
    • 46 篇 系统科学
  • 219 篇 管理学
    • 113 篇 图书情报与档案管...
    • 109 篇 管理科学与工程(可...
    • 22 篇 工商管理
  • 113 篇 医学
    • 103 篇 临床医学
    • 72 篇 基础医学(可授医学...
    • 57 篇 药学(可授医学、理...
  • 20 篇 法学
  • 11 篇 经济学
  • 11 篇 农学
  • 8 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 94 篇 feature extracti...
  • 63 篇 training
  • 49 篇 semantics
  • 41 篇 task analysis
  • 33 篇 accuracy
  • 32 篇 deep learning
  • 32 篇 electroencephalo...
  • 32 篇 computational mo...
  • 26 篇 object detection
  • 26 篇 visualization
  • 25 篇 semantic segment...
  • 24 篇 cameras
  • 24 篇 robustness
  • 23 篇 neural networks
  • 23 篇 predictive model...
  • 22 篇 conferences
  • 22 篇 generative adver...
  • 21 篇 support vector m...
  • 20 篇 machine learning
  • 20 篇 data models

机构

  • 245 篇 key laboratory o...
  • 199 篇 school of comput...
  • 81 篇 shenzhen college...
  • 79 篇 school of data a...
  • 76 篇 university of ch...
  • 74 篇 college of intel...
  • 70 篇 cas key laborato...
  • 66 篇 peng cheng labor...
  • 61 篇 guangdong provin...
  • 52 篇 tianjin key labo...
  • 44 篇 cas key laborato...
  • 41 篇 tianjin key labo...
  • 34 篇 guangdong-hong k...
  • 33 篇 tianjin key labo...
  • 31 篇 shenzhen institu...
  • 31 篇 cas key laborato...
  • 31 篇 guangdong provin...
  • 27 篇 key laboratory o...
  • 27 篇 sun yat-sen univ...
  • 27 篇 the chinese univ...

作者

  • 125 篇 zheng wei-shi
  • 80 篇 guanglin li
  • 59 篇 wu xinyu
  • 44 篇 wei-shi zheng
  • 43 篇 li guanglin
  • 39 篇 yunong zhang
  • 36 篇 xinyu wu
  • 36 篇 xie xiaohua
  • 29 篇 lai jianhuang
  • 28 篇 shixiong chen
  • 27 篇 fuji ren
  • 25 篇 lai jian-huang
  • 24 篇 mei yu
  • 24 篇 peng fang
  • 23 篇 dang jianwu
  • 23 篇 wang xin
  • 22 篇 oluwarotimi will...
  • 22 篇 lu bao-liang
  • 22 篇 wang longbiao
  • 22 篇 ren fuji

语言

  • 1,452 篇 英文
  • 124 篇 其他
  • 11 篇 中文
检索条件"机构=The Key Laboratory of Machine Intelligence and Advanced Computing"
1585 条 记 录,以下是561-570 订阅
排序:
High Efficiency Wiener Filter-based Point Cloud Quality Enhancement for MPEG G-PCC
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2025年
作者: Wei, Yuxuan Wang, Zehan Guo, Tian Liu, Hao Shen, Liquan Yuan, Hui Shandong University School of Control Science and Engineering Jinan250061 China Ministry of Education Key Laboratory of Machine Intelligence and System Control Jinan250061 China Yantai University School of Computer and Control Engineering Yantai264005 China Shanghai University Shanghai Institute for Advanced Communication and Data Science Shanghai200072 China
Point clouds, which directly record the geometry and attributes of scenes or objects by a large number of points, are widely used in various applications such as virtual reality and immersive communication. However, d... 详细信息
来源: 评论
Syntax-enhanced pre-trained model  59
Syntax-enhanced pre-trained model
收藏 引用
Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021
作者: Xu, Zenan Guo, Daya Tang, Duyu Su, Qinliang Shou, Linjun Gong, Ming Zhong, Wanjun Quan, Xiaojun Jiang, Daxin Duan, Nan School of Computer Science and Engineering Sun Yat-Sen University Guangzhou China Microsoft Research Asia Beijing China Microsoft Search Technology Center Asia Beijing China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Key Lab. of Machine Intelligence and Advanced Computing Ministry of Education China
We study the problem of leveraging the syntactic structure of text to enhance pre-trained models such as BERT and RoBERTa. Existing methods utilize syntax of text either in the pre-training stage or in the fine-tuning... 详细信息
来源: 评论
Feature-Based Local Ensemble Framework for Multi-Agent Reinforcement Learning
Feature-Based Local Ensemble Framework for Multi-Agent Reinf...
收藏 引用
International Symposium on Computer Science and Intelligent Controls (ISCSIC)
作者: Xinyu Zhao Jianxiang Liu Faguo Wu Xiao Zhang School of Mathematical Sciences Beihang University Beijing China Institute for Artificial Intelligence Beihang University Beijing China Zhongguancun Laboratory Bejing Advanced Innovation Center for Future Blockchain and Privacy Computing Beijing China Key Laboratory of Mathematics Informatics and Behavioral Semantics (LMIB) Beihang University Beijing China Zhongguancun Laboratory Beijing China
The use of centralized value networks is an important training method in multi-agent reinforcement learning (MARL). Existing methods usually utilize value decomposition to enable agents to achieve localized learning. ... 详细信息
来源: 评论
Multimodal surface material classification based on ensemble learning with optimized features  22
Multimodal surface material classification based on ensemble...
收藏 引用
22nd IEEE International Conference on E-Health Networking, Application and Services, HEALTHCOM 2020
作者: Liu, Xiang Wu, Hancheng Fang, Senlin Yi, Zhengkun Wu, Xinyu CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology Shenzhen518055 China Guangdong Provincial Key Laboratory of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518055 China
In this paper, we propose a novel method for multimodal material classification based on ensemble learning and optimized features. The proposed method consists of three key steps. Firstly, we extract a set of features... 详细信息
来源: 评论
Resource-Aware Multi-Criteria Vehicle Participation for Federated Learning in Internet of Vehicles
SSRN
收藏 引用
SSRN 2023年
作者: Wen, Jie Zhang, Jingbo Zhang, Zhixia Cui, Zhihua Cai, Xingjuan Chen, Jinjun The Shanxi Key Laboratory of Advanced Control and Equipment intelligence Taiyuan University of Science and Technology Shanxi Taiyuan China The Shanxi Key Laboratory of Big Data Analysis and Parallel Computing Taiyuan University of Science and Technology Shanxi Taiyuan China The State Key Lab for Novel Software Technology Nanjing University China Department of Computing Technologies Swinburne University of Technology Melbourne Australia
Federated learning (FL), as a safe distributed training mode, provides strong support for the edge intelligence of the Internet of Vehicles (IoV) to realize efficient collaborative control and safe data sharing. Howev... 详细信息
来源: 评论
A Novel Duo-Stage driven Deep Neural Network Approach for Mitigating Electrode Shift Impact on Myoelectric Pattern Recognition Systems
A Novel Duo-Stage driven Deep Neural Network Approach for Mi...
收藏 引用
IEEE International Workshop on Medical Measurement and Applications (MEMEA)
作者: Frank Kulwa Oluwarotimi Williams Samuel Mojisola Grace Asogbon Tolulope Tofunmi Oyemakinde Olumide Olayinka Obe Guanglin Li CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences (CAS) Shenzhen Guangdong China Shenzhen College of Advanced Technology University of Chinese Academy of Sciences Shenzhen Guangdong China School of Computing and Engineering University of Derby Derby United Kingdom Department of Computer Science Federal University of Technology Akure Nigeria
A major barrier to the commercialization of pattern recognition (PR)-based myoelectric prostheses is the lack of robustness to confounding factors such as electrode shift which has been lingering for years. To overcom...
来源: 评论
Multi-Label Knowledge Distillation
Multi-Label Knowledge Distillation
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Penghui Yang Ming-Kun Xie Chen-Chen Zong Lei Feng Gang Niu Masashi Sugiyama Sheng-Jun Huang College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China School of Computer Science and Engineering Nanyang Technological University Singapore RIKEN Center for Advanced Intelligence Project The University of Tokyo Tokyo Japan
Existing knowledge distillation methods typically work by imparting the knowledge of output logits or intermediate feature maps from the teacher network to the student network, which is very successful in multi-class ...
来源: 评论
Discriminative distillation to reduce class confusion in continual learning
arXiv
收藏 引用
arXiv 2021年
作者: Zhong, Changhong Cui, Zhiying Wang, Ruixuan Zheng, Wei-Shi School of Computer Science and Engineering Sun Yat-sen University Key Laboratory of Machine Intelligence and Advanced Computing MOE Guangzhou510000 China
Successful continual learning of new knowledge would enable intelligent systems to recognize more and more classes of objects. However, current intelligent systems often fail to correctly recognize previously learned ... 详细信息
来源: 评论
Aggregated contextual transformations for high-resolution image inpainting
arXiv
收藏 引用
arXiv 2021年
作者: Zeng, Yanhong Fu, Jianlong Chao, Hongyang Guo, Baining School of Computer Sun Yat-sen University China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Microsoft Research
Image inpainting that completes large free-form missing regions in images is a promising yet challenging task. State-of-the-art approaches have achieved significant progress by taking advantage of generative adversari... 详细信息
来源: 评论
A Lane Detection Method for Advancing Sustainable Energy Internet
A Lane Detection Method for Advancing Sustainable Energy Int...
收藏 引用
IEEE Conference on Energy Internet and Energy System Integration (EI2)
作者: Xiting Peng Yang Yang Xiaoyu Zhang Xiaoling Zhang School of Information Science and Engineering Shenyang University of Technology Liaoning Liaohe Laboratory Shenyang Key Laboratory of Advanced Computing and Application Innovation Shenyang China School of Information Science and Engineering Shenyang University of Technology Shenyang China School of Artificial Intelligence Shenyang University of Technology Shenyang Key Laboratory of Industrial Intelligent Chip and Network System Innovation Application Shenyang China
Artificial intelligence (AI) technology plays a key role in driving the development of a green and smart Energy Internet. As one of the application areas of the Energy Internet, lane detection in intelligent transport... 详细信息
来源: 评论