咨询与建议

限定检索结果

文献类型

  • 944 篇 会议
  • 614 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,560 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 963 篇 工学
    • 631 篇 计算机科学与技术...
    • 557 篇 软件工程
    • 185 篇 信息与通信工程
    • 184 篇 控制科学与工程
    • 156 篇 生物工程
    • 142 篇 生物医学工程(可授...
    • 131 篇 光学工程
    • 107 篇 机械工程
    • 107 篇 电气工程
    • 89 篇 电子科学与技术(可...
    • 67 篇 化学工程与技术
    • 58 篇 仪器科学与技术
    • 36 篇 交通运输工程
    • 33 篇 材料科学与工程(可...
    • 33 篇 建筑学
    • 30 篇 土木工程
    • 27 篇 动力工程及工程热...
    • 26 篇 力学(可授工学、理...
  • 562 篇 理学
    • 245 篇 数学
    • 208 篇 物理学
    • 168 篇 生物学
    • 84 篇 统计学(可授理学、...
    • 70 篇 化学
    • 46 篇 系统科学
  • 217 篇 管理学
    • 114 篇 图书情报与档案管...
    • 106 篇 管理科学与工程(可...
    • 21 篇 工商管理
  • 116 篇 医学
    • 105 篇 临床医学
    • 72 篇 基础医学(可授医学...
    • 57 篇 药学(可授医学、理...
  • 22 篇 法学
  • 11 篇 经济学
  • 11 篇 农学
  • 9 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学

主题

  • 94 篇 feature extracti...
  • 62 篇 training
  • 49 篇 semantics
  • 41 篇 task analysis
  • 32 篇 deep learning
  • 32 篇 electroencephalo...
  • 32 篇 accuracy
  • 30 篇 computational mo...
  • 27 篇 semantic segment...
  • 27 篇 visualization
  • 26 篇 object detection
  • 24 篇 cameras
  • 24 篇 robustness
  • 23 篇 neural networks
  • 23 篇 predictive model...
  • 22 篇 conferences
  • 22 篇 generative adver...
  • 21 篇 support vector m...
  • 20 篇 machine learning
  • 19 篇 electrodes

机构

  • 239 篇 key laboratory o...
  • 192 篇 school of comput...
  • 81 篇 shenzhen college...
  • 79 篇 school of data a...
  • 76 篇 university of ch...
  • 75 篇 college of intel...
  • 69 篇 cas key laborato...
  • 64 篇 peng cheng labor...
  • 59 篇 guangdong provin...
  • 54 篇 tianjin key labo...
  • 44 篇 cas key laborato...
  • 43 篇 tianjin key labo...
  • 35 篇 guangdong-hong k...
  • 33 篇 tianjin key labo...
  • 31 篇 cas key laborato...
  • 31 篇 guangdong provin...
  • 30 篇 shenzhen institu...
  • 27 篇 key laboratory o...
  • 27 篇 anhui province k...
  • 27 篇 the chinese univ...

作者

  • 121 篇 zheng wei-shi
  • 80 篇 guanglin li
  • 59 篇 wu xinyu
  • 42 篇 li guanglin
  • 41 篇 wei-shi zheng
  • 38 篇 yunong zhang
  • 36 篇 xinyu wu
  • 35 篇 xie xiaohua
  • 28 篇 lai jianhuang
  • 28 篇 shixiong chen
  • 27 篇 fuji ren
  • 25 篇 lai jian-huang
  • 24 篇 mei yu
  • 24 篇 peng fang
  • 23 篇 wang xin
  • 22 篇 oluwarotimi will...
  • 22 篇 lu bao-liang
  • 22 篇 ren fuji
  • 21 篇 dang jianwu
  • 20 篇 wang longbiao

语言

  • 1,477 篇 英文
  • 75 篇 其他
  • 10 篇 中文
检索条件"机构=The Key Laboratory of Machine Intelligence and Advanced Computing"
1560 条 记 录,以下是51-60 订阅
排序:
Boosting Lightweight Camouflaged Object Detection with Multi-Scale Context and Boundary Awareness
Boosting Lightweight Camouflaged Object Detection with Multi...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zihan Xu Zheng Wang Haoyu Wang Cheng Liu Yan Zhou Meijun Sun College of Intelligence and Computing Tianjin University Tianjin China Tianjin Key Laboratory of Machine Learning Tianjin University Tianjin China School of Disaster and Emergency Medicine Tianjin University Tianjin China
To adapt to the resource-limited environment, this study introduces the lightweight boundary-aware camouflaged object detection(COD) network LMABnet. We enhance the feature representation capability of the lightweight... 详细信息
来源: 评论
Joint Edge and Regional Depth Enhancement Network for Camouflaged Object Detection
Joint Edge and Regional Depth Enhancement Network for Camouf...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Miao Qi Zheng Wang Cheng Liu Yan Zhou Meijun Sun College of Intelligence and Computing Tianjin University Tianjin China Tianjin Key Laboratory of Machine Learning Tianjin University Tianjin China School of Disaster and Emergency Medicine Tianjin University Tianjin China
Camouflaged object detection (COD) is a task of identifying and locating target objects that are camouflaged, masked, or confused. Research claims that depth cues can provide effective object location cues. However, d... 详细信息
来源: 评论
Multi-scale Re-weighted Attention Feature Fusion for Non-Intrusive Load Monitoring
Multi-scale Re-weighted Attention Feature Fusion for Non-Int...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Lingxi Yang Meijun Sun Haowei Ran Yipu Liu Yan Zhou Zheng Wang College of Intelligence and Computing Tianjin University Tianjin China Tianjin Key Laboratory of Machine Learning Tianjin University Tianjin China School of Disaster and Emergency Medicine Tianjin University Tianjin China
Non-Intrusive Load Monitoring (NILM) addresses the challenge of disaggregating total energy consumption into individual appliance usage, which is essential for enhancing energy efficiency and managing smart grids. Exi... 详细信息
来源: 评论
Non-Markovian effect enhanced quantum noises in a coherent Ising machine
收藏 引用
Optics Express 2025年 第11期33卷 22208-22221页
作者: Chen-Rui Fan Bo Lu Yi-Xuan Yao Qing Ai Chuan Wang School of Artificial Intelligence Beijing Normal University Beijing 100875 China Laboratory for Advanced Computing and Intelligence Engineering Zhengzhou 450001 China lubo@*** School of Physics and Astronomy Applied Optics Beijing Area Major Laboratory Beijing 100875 China Key Laboratory of Multiscale Spin Physics Ministry of Education Beijing Normal University Beijing 100875 China wangchuan@***
Combinatorial optimization problems (COPs) constitute a fundamental class of computational challenges with extensive applications across scientific and industrial domains. The emergence of the coherent Ising machine (... 详细信息
来源: 评论
Class Semantic Prompts Enhanced Prototypical Fusion Method for Few-shot Named Entity Recognition
Class Semantic Prompts Enhanced Prototypical Fusion Method f...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Mei Yu Yuang Tao Mankun Zhao Tianyi Xu Zechen Meng Wenbin Zhang Jian Yu School of Future Technology Tianjin University Tianjin China College of Intelligence and Computing Tianjin University Tianjin China Tianjin Key Laboratory of Cognitive Computing and Application Tianjin China Tianjin Key Laboratory of Advanced Networking Tianjin China Information and Network Center Tianjin University Tianjin China
Few-shot named entity recognition is to identify named entities in scenarios where labeled data is scarce. Existing prototype building methods ignore the use of class semantic and it is difficult to obtain accurate pr... 详细信息
来源: 评论
Multi-Granular Multimodal Clue Fusion for Meme Understanding
arXiv
收藏 引用
arXiv 2025年
作者: Zheng, Li Fei, Hao Dai, Ting Peng, Zuquan Li, Fei Ma, Huisheng Teng, Chong Ji, Donghong Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education School of Cyber Science and Engineering Wuhan University Wuhan China National University of Singapore Singapore Singapore Laboratory for Advanced Computing and Intelligence Engineering Wuxi China North China Institute of Computing Technology Beijing China
With the continuous emergence of various social media platforms frequently used in daily life, the multimodal meme understanding (MMU) task has been garnering increasing attention. MMU aims to explore and comprehend t... 详细信息
来源: 评论
A Prompt Learning Framework with Large Language Model Augmentation for Few-shot Multi-label Intent Detection
A Prompt Learning Framework with Large Language Model Augmen...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Ning Zhuang Xiao Wei Junlei Li Xiaobao Wang Chenyang Wang Longbiao Wang Jianwu Dang Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin China Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen China Huiyan Technology (Tianjin) Co. Ltd Tianjin China Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China
Intent detection (ID) is essential in spoken language understanding, especially in multi-label settings where intent labels are interdependent and diverse. Existing methods like SE-MLP and QA-FT struggle in few-shot s... 详细信息
来源: 评论
Progressive Residual Extraction Based Pre-Training for Speech Representation Learning
收藏 引用
IEEE Transactions on Audio, Speech and Language Processing 2025年 33卷 1825-1837页
作者: Tianrui Wang Jin Li Ziyang Ma Rui Cao Xie Chen Longbiao Wang Meng Ge Xiaobao Wang Yuguang Wang Jianwu Dang Nyima Tashi Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China Huiyan Technology (Tianjin) Company Ltd. Tianjin China Saw Swee Hock School of Public Health National University of Singapore Singapore Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China School of Information Science and Technology Tibet University Lhasa China State Key Laboratory of Tibetan Intelligence Lhasa China
Self-supervised learning (SSL) has garnered significant attention in speech processing, particularly excelling in linguistic tasks such as speech recognition. However, improving the performance of pre-trained models a... 详细信息
来源: 评论
WMRE: Enhancing Distant Supervised Relation Extraction with Word-level Multi-instance Learning and Multi-hierarchical Feature
WMRE: Enhancing Distant Supervised Relation Extraction with ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Xiang Ying Xiangchuan Xie Tianyi Xu Yue Zhao Zechen Meng Mankun Zhao College of Intelligence and Computing Tianjin University Tianjin China Tianjin Key Laboratory of Cognitive Computing and Application Tianjin China Tianjin Key Laboratory of Advanced Networking Tianjin China School of New Media and Communication Tianjin University Tianjin China Information and Network Center Tianjin University Tianjin China
Distant supervised relation extraction (DSRE) obtains large amounts of data cost-effectively by aligning knowledge base with natural texts but also brings noisy data. Existing methods deal with noise through multi-ins... 详细信息
来源: 评论
FGDC: A fine-grained divide-and-conquer approach for extending NCO to solve large-scale Traveling Salesman Problem
收藏 引用
Expert Systems with Applications 2025年 286卷
作者: Chen, Xinwei Li, Yurui Yang, Yifan Zhang, Li Li, Shijian Pan, Gang College of Computer Science and Technology Zhejiang University Hangzhou310027 China Advanced Technology Research Institute Zhejiang University Hangzhou310027 China State Key Laboratory of Brain-machine Intelligence Zhejiang University Hangzhou310027 China
Large-scale Traveling Salesman Problem (TSP) applications are common and important in practice. Unfortunately, the time usage of the state-of-the-art heuristic solver LKH increases quadratically with the scale of the ... 详细信息
来源: 评论