咨询与建议

限定检索结果

文献类型

  • 203 篇 期刊文献
  • 200 篇 会议

馆藏范围

  • 403 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 265 篇 工学
    • 220 篇 计算机科学与技术...
    • 181 篇 软件工程
    • 51 篇 信息与通信工程
    • 45 篇 控制科学与工程
    • 24 篇 光学工程
    • 18 篇 机械工程
    • 16 篇 建筑学
    • 16 篇 土木工程
    • 16 篇 网络空间安全
    • 15 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 测绘科学与技术
    • 11 篇 生物工程
    • 10 篇 化学工程与技术
    • 9 篇 安全科学与工程
    • 7 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 生物医学工程(可授...
    • 4 篇 动力工程及工程热...
  • 80 篇 管理学
    • 44 篇 图书情报与档案管...
    • 43 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 69 篇 理学
    • 38 篇 数学
    • 18 篇 统计学(可授理学、...
    • 12 篇 生物学
    • 11 篇 物理学
    • 10 篇 化学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
    • 3 篇 法学
  • 2 篇 农学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 15 篇 semantics
  • 12 篇 image segmentati...
  • 11 篇 semantic segment...
  • 11 篇 training
  • 10 篇 contrastive lear...
  • 9 篇 reinforcement le...
  • 8 篇 computer vision
  • 8 篇 visual languages
  • 7 篇 speech processin...
  • 7 篇 convolution
  • 7 篇 visualization
  • 7 篇 image reconstruc...
  • 6 篇 distillation
  • 6 篇 pipelines
  • 5 篇 object detection
  • 5 篇 face recognition
  • 5 篇 graph neural net...
  • 5 篇 costs
  • 5 篇 benchmarking
  • 5 篇 codes

机构

  • 240 篇 key laboratory o...
  • 69 篇 institute of art...
  • 42 篇 key laboratory o...
  • 41 篇 school of inform...
  • 38 篇 tencent youtu la...
  • 33 篇 peng cheng labor...
  • 27 篇 fujian key labor...
  • 25 篇 key laboratory o...
  • 20 篇 fujian key labor...
  • 18 篇 youtu lab tencen...
  • 16 篇 key laboratory o...
  • 12 篇 national univers...
  • 11 篇 school of inform...
  • 8 篇 tencent
  • 8 篇 school of comput...
  • 8 篇 skywork ai
  • 8 篇 school of comput...
  • 8 篇 the key laborato...
  • 8 篇 department of ar...
  • 7 篇 key laboratory o...

作者

  • 153 篇 ji rongrong
  • 69 篇 sun xiaoshuai
  • 49 篇 rongrong ji
  • 40 篇 cao liujuan
  • 38 篇 ji jiayi
  • 34 篇 wang cheng
  • 33 篇 zhang shengchuan
  • 32 篇 zhou yiyi
  • 26 篇 zheng xiawu
  • 26 篇 ma yiwei
  • 25 篇 zhang yuxin
  • 23 篇 chao fei
  • 20 篇 lin mingbao
  • 20 篇 zhang yan
  • 19 篇 luo gen
  • 17 篇 wen chenglu
  • 17 篇 shen yunhang
  • 17 篇 xiaoshuai sun
  • 16 篇 jiang guannan
  • 16 篇 wang haowei

语言

  • 299 篇 英文
  • 104 篇 其他
检索条件"机构=The Key Laboratory of Multimedia Trusted Perception and Efficient Computing"
403 条 记 录,以下是181-190 订阅
排序:
RiskQ: Risk-sensitive Multi-Agent Reinforcement Learning Value Factorization
arXiv
收藏 引用
arXiv 2023年
作者: Shen, Siqi Ma, Chennan Li, Chao Liu, Weiquan Fu, Yongquan Mei, Songzhu Liu, Xinwang Wang, Cheng China Key Laboratory of Multimedia Trusted Perception and Efficient Computing XMU China School of Computer National University of Defense Technology China
Multi-agent systems are characterized by environmental uncertainty, varying policies of agents, and partial observability, which result in significant risks. In the context of Multi-Agent Reinforcement Learning (MARL)... 详细信息
来源: 评论
FlashSloth: Lightning Multimodal Large Language Models via Embedded Visual Compression
arXiv
收藏 引用
arXiv 2024年
作者: Tong, Bo Lai, Bokai Zhou, Yiyi Luo, Gen Shen, Yunhang Li, Ke Sun, Xiaoshuai Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University 361005 China Youtu Lab Tencent China OpenGVLab Shanghai AI Laboratory China
Despite a big leap forward in capability, multimodal large language models (MLLMs) tend to behave like a sloth in practical use, i.e., slow response and large latency. Recent efforts are devoted to building tiny MLLMs... 详细信息
来源: 评论
Diffree: Text-Guided Shape Free Object Inpainting with Diffusion Model
arXiv
收藏 引用
arXiv 2024年
作者: Zhao, Lirui Yang, Tianshuo Shao, Wenqi Zhang, Yuxin Qiao, Yu Luo, Ping Zhang, Kaipeng Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China OpenGVLab Shanghai AI Laboratory China The University of Hong Kong Hong Kong
This paper addresses an important problem of object addition for images with only text guidance. It is challenging because the new object must be integrated seamlessly into the image with consistent visual context, su... 详细信息
来源: 评论
MMICT: Boosting Multi-Modal Fine-Tuning with In-Context Examples
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Tao Zhang, Enwei Gao, Yuting Li, Ke Sun, Xing Zhang, Yan Li, Hui Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China Tencent Youtu Lab China
Although In-Context Learning (ICL) brings remarkable performance gains to Large Language Models (LLMs), the improvements remain lower than fine-tuning on downstream tasks. This paper introduces Multi-Modal In-Context ... 详细信息
来源: 评论
SMMix: Self-Motivated Image Mixing for Vision Transformers
SMMix: Self-Motivated Image Mixing for Vision Transformers
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Mengzhao Chen Mingbao Lin Zhihang Lin Yuxin Zhang Fei Chao Rongrong Ji Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China School of Informatics Xiamen University Tencent Youtu Lab
CutMix is a vital augmentation strategy that determines the performance and generalization ability of vision transformers (ViTs). However, the inconsistency between the mixed images and the corresponding labels harms ...
来源: 评论
FocSAM: Delving Deeply into Focused Objects in Segmenting Anything
FocSAM: Delving Deeply into Focused Objects in Segmenting An...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: You Huang Zongyu Lan Liujuan Cao Xianming Lin Shengchuan Zhang Guannan Jiang Rongrong Ji Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University Intelligent Manufacturing Department Contemporary Amperex Technology Co. Limited (CATL)
The Segment Anything Model (SAM) marks a notable milestone in segmentation models, highlighted by its robust zero-shot capabilities and ability to handle diverse prompts. SAM follows a pipeline that separates interact... 详细信息
来源: 评论
DuPI: Dual-resolution Pseudo-label Integration for Semi-supervised Instance Segmentation
DuPI: Dual-resolution Pseudo-label Integration for Semi-supe...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yue Ma Jie Hu Chen Chen Shengchuan Zhang Xianming Lin Liujuan Cao Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University P.R. China Learning and Vision Lab National University of Singapore Singapore
The role of high-quality pseudo-labels is pivotal in semi-supervised instance segmentation (SSIS). However, existing SSIS frameworks predominantly produce pseudo-labels at a single resolution, which can introduce nois... 详细信息
来源: 评论
DYNAMIC SPARSE NO TRAINING ⊘: TRAINING-FREE FINE-TUNING FOR SPARSE LLMS  12
DYNAMIC SPARSE NO TRAINING ⊘: TRAINING-FREE FINE-TUNING FOR...
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Zhang, Yuxin Zhao, Lirui Lin, Mingbao Sun, Yunyun Yao, Yiwu Han, Xingjia Tanner, Jared Liu, Shiwei Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China Pengcheng Lab China Tencent Youtu Lab China Huawei Technologies China University of Oxford United Kingdom University of Texas Austin United States Eindhoven University of Technology Netherlands Institute of Artificial Intelligence Xiamen University China
The ever-increasing large language models (LLMs), though opening a potential path for the upcoming artificial general intelligence, sadly drops a daunting obstacle on the way towards their on-device deployment. As one... 详细信息
来源: 评论
STGC-NeRF: Spatial-Temporal Geometric Consistency for LiDAR Neural Radiance Fields in Dynamic Scenes  39
STGC-NeRF: Spatial-Temporal Geometric Consistency for LiDAR ...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Yu, Shangshu Sun, Xiaotian Li, Wen Xu, Qingshan Yuan, Zhimin Wang, Sijie She, Rui Wang, Cheng Nanyang Technological University Singapore Fujian Key Laboratory of Sensing and Computing for Smart Cities Xiamen University China Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University China Beihang University China
While Neural Radiance Fields (NeRFs) have advanced the frontiers of novel view synthesis (NVS) using LiDAR data, they still struggle in dynamic scenes. Due to the low frequency and sparsity characteristics of LiDAR po... 详细信息
来源: 评论
Reinforcement Learning Based Jamming Detection for Reliable Wireless Communications
Reinforcement Learning Based Jamming Detection for Reliable ...
收藏 引用
IEEE Conference on Vehicular Technology (VTC)
作者: Chen Wang Yifan Chen Zhiping Lin Qiaoxin Chen Liang Xiao Department of Information and Communication Engineering Xiamen University Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University P.R. China
Both the radio spectrum features such as power spectral density (PSD) and the communication performance such as packet loss rate (PLR) can be exploited to detect jamming attacks, with the resulting detection results u... 详细信息
来源: 评论