咨询与建议

限定检索结果

文献类型

  • 628 篇 期刊文献
  • 596 篇 会议

馆藏范围

  • 1,224 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 870 篇 工学
    • 690 篇 计算机科学与技术...
    • 605 篇 软件工程
    • 184 篇 信息与通信工程
    • 100 篇 控制科学与工程
    • 88 篇 生物工程
    • 73 篇 生物医学工程(可授...
    • 62 篇 机械工程
    • 55 篇 化学工程与技术
    • 53 篇 电气工程
    • 53 篇 电子科学与技术(可...
    • 46 篇 光学工程
    • 27 篇 仪器科学与技术
    • 24 篇 交通运输工程
    • 22 篇 土木工程
    • 22 篇 航空宇航科学与技...
    • 17 篇 建筑学
    • 17 篇 网络空间安全
  • 481 篇 理学
    • 343 篇 数学
    • 105 篇 生物学
    • 81 篇 统计学(可授理学、...
    • 59 篇 物理学
    • 57 篇 化学
    • 34 篇 系统科学
  • 295 篇 管理学
    • 158 篇 管理科学与工程(可...
    • 143 篇 图书情报与档案管...
    • 48 篇 工商管理
  • 49 篇 医学
    • 41 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 26 篇 药学(可授医学、理...
  • 20 篇 农学
  • 18 篇 法学
    • 15 篇 社会学
  • 8 篇 经济学
  • 6 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学
  • 2 篇 军事学
  • 1 篇 哲学

主题

  • 66 篇 computer science
  • 57 篇 educational inst...
  • 53 篇 knowledge engine...
  • 53 篇 laboratories
  • 50 篇 educational tech...
  • 42 篇 data mining
  • 28 篇 semantics
  • 27 篇 computer science...
  • 27 篇 ontology
  • 23 篇 image segmentati...
  • 22 篇 feature extracti...
  • 19 篇 deep learning
  • 16 篇 reinforcement le...
  • 16 篇 genetic algorith...
  • 15 篇 clustering algor...
  • 15 篇 artificial intel...
  • 14 篇 ontologies
  • 14 篇 topology
  • 13 篇 support vector m...
  • 12 篇 neural networks

机构

  • 514 篇 college of compu...
  • 281 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 46 篇 college of softw...
  • 41 篇 key laboratory o...
  • 40 篇 school of artifi...
  • 35 篇 key laboratory o...
  • 30 篇 college of compu...
  • 29 篇 key laboratory o...
  • 27 篇 jilin university...
  • 21 篇 school of comput...
  • 20 篇 jilin university...
  • 19 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 17 篇 department of co...
  • 17 篇 key laboratory o...
  • 15 篇 key laboratory o...
  • 15 篇 the college of c...
  • 15 篇 key laboratory o...

作者

  • 47 篇 yang bo
  • 36 篇 sun geng
  • 36 篇 liang yanchun
  • 33 篇 ouyang dantong
  • 31 篇 dantong ouyang
  • 30 篇 li xiongfei
  • 28 篇 ouyang jihong
  • 27 篇 liu dayou
  • 27 篇 zuo wanli
  • 27 篇 li ximing
  • 26 篇 yanchun liang
  • 24 篇 bo yang
  • 24 篇 liu yanheng
  • 23 篇 niyato dusit
  • 23 篇 yanheng liu
  • 22 篇 chen haipeng
  • 22 篇 li jiahui
  • 20 篇 chang yi
  • 20 篇 da-you liu
  • 19 篇 guan renchu

语言

  • 1,130 篇 英文
  • 50 篇 中文
  • 44 篇 其他
检索条件"机构=The Key Laboratory of Symbolic Computation and Knowledge Engineering"
1224 条 记 录,以下是161-170 订阅
排序:
COVID-19 knowledge Graph for Drug and Vaccine Development
COVID-19 Knowledge Graph for Drug and Vaccine Development
收藏 引用
2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
作者: Huang, Lan Guan, Hongrui Liang, Yanchun Guan, Renchu Feng, Xiaoyue Jilin University The Key Laboratory for Symbolic Computation and Knowledge Engineering of the Ministry of Education College of Computer Science and Technology Changchun China Zhuhai College of Science and Technology Zhuhai Sub Laboratory Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Zhuhai China
The worldwide spread of COVID-19 has made a severe impact on human health and life. It has shown rapid propagation, long in vitro survival, and a long incubation period. More seriously, COVID-19 is more susceptible to... 详细信息
来源: 评论
Structure optimization of Bayesian network based on dependency analysis of relational database
International Journal of Digital Content Technology and its ...
收藏 引用
International Journal of Digital Content Technology and its Applications 2012年 第22期6卷 400-408页
作者: Wang, Limin Xia, Huijie Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University China College of Computer Science and Technology Jilin University China State Key Laboratory for Novel Software Technology Nanjing University China
The utilization of expert knowledge to construct Bayesian Network (BN) is one of the key issues of uncertain inference. In this paper the learning procedure of BN is simplified by applying data dependencies in relatio... 详细信息
来源: 评论
Dilated Convolutional Pixels Affinity Network for Weakly Supervised Semantic Segmentation
收藏 引用
Chinese Journal of Electronics 2021年 第6期30卷 1120-1130页
作者: ZHANG Zhe WANG Bilin YU Zhezhou LI Zhiyuan College of Computer Science and Technology Jilin University Key Laboratory for Symbol Computation and Knowledge Engineering of National Education Ministry
This paper studies semantic segmentation primarily under image-level weak-supervision. Most stateof-the-art technologies have recently used deep classification networks to create small and sparse discriminatory seed r... 详细信息
来源: 评论
A two-stage HV-driven adaptive multi-objective evolutionary algorithm and its application in Fixed Polarity Reed-Muller circuits
收藏 引用
Expert Systems with Applications 2025年
作者: Lu Yang Shengsheng Wang Ruyi Dong Zihao Fu College of Computer Science and Technology Jilin University Changchun 130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun 130012 China College of Information and Control Engineering Jilin Institute of Chemical Technology Changchun 130012 China
To achieve a balance between convergence and diversity, we proposed a two-stage HV-driven adaptive multi-objective evolutionary algorithm (TSAMEA). TSAMEA employs a sinusoidal decreasing parameter adjustment method to...
来源: 评论
A Graph Attribute Aggregation Method based on Feature engineering
收藏 引用
Journal of The Institution of Engineers (India): Series B 2022年 第3期103卷 711-719页
作者: Wang, Hao Dong, Li-Yan Ma, Xin-Tao Sun, Ming-Hui College of Computer Science and Technology Jilin University Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China
In the fields of social network analysis and knowledge graph, many semi-supervised learning algorithms based on graph convolutional neural network (GCN) have been widely used. Most of these algorithms usually improve ... 详细信息
来源: 评论
Stochastic Variational Inference-Based Parallel and Online Supervised Topic Model for Large-Scale Text Processing
收藏 引用
Journal of Computer Science & Technology 2018年 第5期33卷 1007-1022页
作者: Yang Li Wen-Zhuo Song Bo Yang College of Computer Science and Technology Jilin University Changchun 130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University Changchun 130012 China Aviation University of Air Force Changchun 130062 China
Topic modeling is a mainstream and effective technology to deal with text data, with wide applications in text analysis, natural language, personalized recommendation, computer vision, etc. Among all the known topic m... 详细信息
来源: 评论
Fine-grained sentimental tendency analysis based on Chinese online commentary of mobile phone
Fine-grained sentimental tendency analysis based on Chinese ...
收藏 引用
2016 IEEE International Conference on Cloud Computing and Big Data Analysis, ICCCBDA 2016
作者: Huang, Jiao Sun, Haobo Guo, Pengbo Zhao, Minghao Niu, Kai Key Laboratory of Symbolic Computation and Knowledge Engineering College of Computer Science and Technology Jilin University Changchun China
In recent years, with the development of the Internet, it is more and more common for users to buy mobile phones on the Internet. On the one hand, sentiment analysis help customers to fully understand the performance ... 详细信息
来源: 评论
Strengthened Initialization of Adaptive Cross-Generation Differential Evolution
收藏 引用
Computer Modeling in engineering & Sciences 2022年 第3期130卷 1495-1516页
作者: Wei Wan Gaige Wang Junyu Dong Department of Computer Science of Technology Ocean University of ChinaQingdao266100China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin UniversityChangchun130012China Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis Guangxi University for NationalitiesNanning530006China
Adaptive Cross-Generation Differential Evolution(ACGDE)is a recently-introduced algorithm for solving multiobjective problems with remarkable performance compared to other evolutionary algorithms(EAs).However,its conv... 详细信息
来源: 评论
Learn to explain transformer via interpretation path by reinforcement learning
收藏 引用
Neural Networks 2025年 188卷 107496页
作者: Niu, Runliang Wang, Qi Kong, He Xing, Qianli Chang, Yi Yu, Philip S. School of Artificial Intelligence Jilin University ChangChun130012 China Engineering Research Center of Knowledge-Driven Human–Machine Intelligence Ministry of Education China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University ChangChun China Department of Computer Science University of Illinois at Chicago United States
In recent years, the Transformer model has become a key part of many AI systems, making it important to understand how it works. The large parameter size and complex structure of the Transformer make interpretation mo... 详细信息
来源: 评论
Painlevé Property and Integrability of Polynomial Dynamical Systems
收藏 引用
Communications in Mathematical Research 2014年 第4期30卷 358-368页
作者: Li Wen-lei Shi Shao-yun School of Mathematics Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University
The main purpose of this paper is to investigate the connection between the Painlev′e property and the integrability of polynomial dynamical systems. We show that if a polynomial dynamical system has Painlev′e prope... 详细信息
来源: 评论