咨询与建议

限定检索结果

文献类型

  • 628 篇 期刊文献
  • 596 篇 会议

馆藏范围

  • 1,224 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 870 篇 工学
    • 690 篇 计算机科学与技术...
    • 605 篇 软件工程
    • 184 篇 信息与通信工程
    • 100 篇 控制科学与工程
    • 88 篇 生物工程
    • 73 篇 生物医学工程(可授...
    • 62 篇 机械工程
    • 55 篇 化学工程与技术
    • 53 篇 电气工程
    • 53 篇 电子科学与技术(可...
    • 46 篇 光学工程
    • 27 篇 仪器科学与技术
    • 24 篇 交通运输工程
    • 22 篇 土木工程
    • 22 篇 航空宇航科学与技...
    • 17 篇 建筑学
    • 17 篇 网络空间安全
  • 481 篇 理学
    • 343 篇 数学
    • 105 篇 生物学
    • 81 篇 统计学(可授理学、...
    • 59 篇 物理学
    • 57 篇 化学
    • 34 篇 系统科学
  • 295 篇 管理学
    • 158 篇 管理科学与工程(可...
    • 143 篇 图书情报与档案管...
    • 48 篇 工商管理
  • 49 篇 医学
    • 41 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 26 篇 药学(可授医学、理...
  • 20 篇 农学
  • 18 篇 法学
    • 15 篇 社会学
  • 8 篇 经济学
  • 6 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学
  • 2 篇 军事学
  • 1 篇 哲学

主题

  • 66 篇 computer science
  • 57 篇 educational inst...
  • 53 篇 knowledge engine...
  • 53 篇 laboratories
  • 50 篇 educational tech...
  • 42 篇 data mining
  • 28 篇 semantics
  • 27 篇 computer science...
  • 27 篇 ontology
  • 23 篇 image segmentati...
  • 22 篇 feature extracti...
  • 19 篇 deep learning
  • 16 篇 reinforcement le...
  • 16 篇 genetic algorith...
  • 15 篇 clustering algor...
  • 15 篇 artificial intel...
  • 14 篇 ontologies
  • 14 篇 topology
  • 13 篇 support vector m...
  • 12 篇 neural networks

机构

  • 514 篇 college of compu...
  • 281 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 46 篇 college of softw...
  • 41 篇 key laboratory o...
  • 40 篇 school of artifi...
  • 35 篇 key laboratory o...
  • 30 篇 college of compu...
  • 29 篇 key laboratory o...
  • 27 篇 jilin university...
  • 21 篇 school of comput...
  • 20 篇 jilin university...
  • 19 篇 jilin university...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 17 篇 department of co...
  • 17 篇 key laboratory o...
  • 15 篇 key laboratory o...
  • 15 篇 the college of c...
  • 15 篇 key laboratory o...

作者

  • 47 篇 yang bo
  • 36 篇 sun geng
  • 36 篇 liang yanchun
  • 33 篇 ouyang dantong
  • 31 篇 dantong ouyang
  • 30 篇 li xiongfei
  • 28 篇 ouyang jihong
  • 27 篇 liu dayou
  • 27 篇 zuo wanli
  • 27 篇 li ximing
  • 26 篇 yanchun liang
  • 24 篇 bo yang
  • 24 篇 liu yanheng
  • 23 篇 niyato dusit
  • 23 篇 yanheng liu
  • 22 篇 chen haipeng
  • 22 篇 li jiahui
  • 20 篇 chang yi
  • 20 篇 da-you liu
  • 19 篇 guan renchu

语言

  • 1,130 篇 英文
  • 50 篇 中文
  • 44 篇 其他
检索条件"机构=The Key Laboratory of Symbolic Computation and Knowledge Engineering"
1224 条 记 录,以下是21-30 订阅
排序:
Efficient Sharing of Energy Consumption Data: A Privacy-Preserving Threshold Aggregation Approach
收藏 引用
IEEE Internet of Things Journal 2025年
作者: Li, Guohao Zhou, Lu Lian, Jiale Liu, Siyi Yang, Li Zhong, Yantao Li, Qiang Xidian University School of Computer Science and Technology Xi’an China Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Changchun China Co. Ltd Guangdong Shenzhen China
Energy consumption data collected by smart meters is increasingly used by various subscribers in the smart grid for load management, energy monitoring, and policy planning. To protect user privacy, edge-assisted priva... 详细信息
来源: 评论
Fairness-Aware Budgeted Edge Server Placement for Connected Autonomous Vehicles
收藏 引用
IEEE Transactions on Mobile Computing 2025年 第6期24卷 4762-4776页
作者: Wu, Jintao Xu, Xiaolong Cui, Guangming Zhang, Yiwen Qi, Lianyong Dou, Wanchun Cai, Zhipeng Nanjing University of Information Science & Technology Jiangsu Province Engineering Research Center of Advanced Computing and Intelligent Services School of Software Nanjing210044 China Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Changchun130012 China Nanjing University of Information Science & Technology Jiangsu Province Engineering Research Center of Advanced Computing and Intelligent Services School of Software China Nanjing University State Key Laboratory for Novel Software Technology China Anhui University School of Computer Science and Technology Anhui230031 China College of Computer Science and Technology Qingdao266580 China Nanjing University State Key Laboratory for Novel Software Technology Nanjing210023 China Georgia State University Department of Computer Science United States
Mobile edge computing (MEC) considerably enhances the capabilities and performance of connected autonomous vehicles (CAVs) by deploying edge servers (ESs) on roadside units (RSUs) near CAVs, thereby ensuring low-laten... 详细信息
来源: 评论
Enhancing Unsupervised Graph Few-shot Learning via Set Functions and Optimal Transport  25
Enhancing Unsupervised Graph Few-shot Learning via Set Funct...
收藏 引用
Proceedings of the 31st ACM SIGKDD Conference on knowledge Discovery and Data Mining V.1
作者: Yonghao Liu Fausto Giunchiglia Ximing Li Lan Huang Xiaoyue Feng Renchu Guan Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education College of Computer Science and Technology Jilin University Changchun China Department of Information Engineering and Computer Science University of Trento Trento Italy
Graph few-shot learning has garnered significant attention for its ability to rapidly adapt to downstream tasks with limited labeled data, sparking considerable interest among researchers. Recent advancements in graph... 详细信息
来源: 评论
A Correlated Data-Driven Collaborative Beamforming Approach for Energy-efficient IoT Data Transmission
arXiv
收藏 引用
arXiv 2025年
作者: Li, Yangning Kang, Hui Li, Jiahui Sun, Geng Sun, Zemin Wang, Jiacheng Zhao, Changyuan Niyato, Dusit College of Computer Science and Technology Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China College of Computer Science and Technology Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun130012 China College of Computing and Data Science Nanyang Technological University 639798 Singapore College of Computing and Data Science Nanyang Technological University Singapore
An expansion of Internet of Things (IoTs) has led to significant challenges in wireless data harvesting, dissemination, and energy management due to the massive volumes of data generated by IoT devices. These challeng... 详细信息
来源: 评论
Boosting Weak-to-Strong Agents in Multiagent Reinforcement Learning via Balanced PPO
收藏 引用
IEEE Transactions on Neural Networks and Learning Systems 2025年 第5期36卷 9136-9149页
作者: Huang, Sili Chen, Hechang Piao, Haiyin Sun, Zhixiao Chang, Yi Sun, Lichao Yang, Bo Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineer of Ministry of Education School of Artificial Intelligence Changchun130012 China Jilin University School of Artificial Intelligence Changchun130012 China Northwestern Polytechnical University Unmanned System Research Institute Xi’an710068 China Lehigh University Department of Computer Science and Engineering BethlehemPA18015 United States Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineer of Ministry of Education School of Computer Science and Technology Changchun130012 China
Multiagent policy gradients (MAPGs), an essential branch of reinforcement learning (RL), have made great progress in both industry and academia. However, existing models do not pay attention to the inadequate training... 详细信息
来源: 评论
Enhancing Unsupervised Graph Few-shot Learning via Set Functions and Optimal Transport
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Yonghao Giunchiglia, Fausto Li, Ximing Huang, Lan Feng, Xiaoyue Guan, Renchu College of Computer Science and Technology Jilin University Changchun China Department of Information Engineering and Computer Science University of Trento Trento Italy Key Laboratory of Symbolic Computation and Knowledge Engineering The Ministry of Education China
Graph few-shot learning has garnered significant attention for its ability to rapidly adapt to downstream tasks with limited labeled data, sparking considerable interest among researchers. Recent advancements in graph... 详细信息
来源: 评论
AHMSA-Net: Adaptive Hierarchical Multi-Scale Attention Network for Micro-Expression Recognition
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Lijun Zhang, Yifan Tang, Weicheng Sun, Xinzhi Wang, Xiaomeng Li, Zhanshan College of Computer Science and Technology Jilin University Changchun Jilin130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun Jilin130012 China
Micro-expression recognition (MER) presents a significant challenge due to the transient and subtle nature of the motion changes involved. In recent years, deep learning methods based on attention mechanisms have made... 详细信息
来源: 评论
KSSANet: KAN-Driven Spatial-Spectral Attention Networks for Hyperspectral Image Super-Resolution
KSSANet: KAN-Driven Spatial-Spectral Attention Networks for ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Baisong Li Xingwang Wang Haixiao Xu College of Computer Science and Technology Jilin University Key Laboratory of Symbolic Computation and Krowledge Engineering of Ministry of Education Jilin University
Due to the limitations of physical imaging, acquiring high-resolution hyperspectral images (HR-HSIs) has always been a significant challenge. Single hyperspectral image super-resolution (SHSR) technology aims to gener... 详细信息
来源: 评论
Dual-level Mixup for Graph Few-shot Learning with Fewer Tasks
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Yonghao Li, Mengyu Giunchiglia, Fausto Huang, Lan Li, Ximing Feng, Xiaoyue Guan, Renchu College of Computer Science and Technology Jilin University Changchun China Department of Information Engineering and Computer Science University of Trento Trento Italy Key Laboratory of Symbolic Computation and Knowledge Engineering The Ministry of Education China
Graph neural networks have been demonstrated as a powerful paradigm for effectively learning graph-structured data on the web and mining content from it. Current leading graph models require a large number of labeled ... 详细信息
来源: 评论
SSRMamba: Efficient Visual State Space Model for Spectral Super-Resolution
SSRMamba: Efficient Visual State Space Model for Spectral Su...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Baisong Li Xingwang Wang Haixiao Xu College of Computer Science and Technology Jilin University Key Laboratory of Symbolic Computation and Krowledge Engineering of Ministry of Education Jilin University
Spectral super-resolution, which reconstructs hyperspectral images (HSI) from a single RGB image, has garnered increasing attention. Due to the limitations of CNN structures in spectral modeling and the high computati... 详细信息
来源: 评论