咨询与建议

限定检索结果

文献类型

  • 305 篇 期刊文献
  • 264 篇 会议

馆藏范围

  • 569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 389 篇 工学
    • 308 篇 计算机科学与技术...
    • 269 篇 软件工程
    • 71 篇 信息与通信工程
    • 54 篇 控制科学与工程
    • 52 篇 生物工程
    • 43 篇 光学工程
    • 37 篇 电气工程
    • 34 篇 生物医学工程(可授...
    • 30 篇 电子科学与技术(可...
    • 29 篇 机械工程
    • 23 篇 化学工程与技术
    • 14 篇 土木工程
    • 13 篇 建筑学
    • 13 篇 交通运输工程
    • 11 篇 安全科学与工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 网络空间安全
    • 8 篇 仪器科学与技术
  • 209 篇 理学
    • 99 篇 数学
    • 68 篇 物理学
    • 59 篇 生物学
    • 36 篇 统计学(可授理学、...
    • 25 篇 化学
    • 15 篇 系统科学
  • 104 篇 管理学
    • 54 篇 管理科学与工程(可...
    • 48 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 26 篇 医学
    • 23 篇 临床医学
    • 21 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
  • 7 篇 经济学
  • 7 篇 法学
  • 5 篇 农学
  • 4 篇 教育学

主题

  • 22 篇 semantics
  • 20 篇 training
  • 17 篇 feature extracti...
  • 16 篇 deep learning
  • 14 篇 neural networks
  • 11 篇 contrastive lear...
  • 10 篇 computational mo...
  • 10 篇 computer vision
  • 9 篇 conferences
  • 9 篇 object detection
  • 9 篇 semantic segment...
  • 9 篇 task analysis
  • 8 篇 benchmark testin...
  • 8 篇 machine learning
  • 8 篇 forecasting
  • 7 篇 data models
  • 7 篇 robustness
  • 6 篇 deep neural netw...
  • 6 篇 transformers
  • 6 篇 signal processin...

机构

  • 196 篇 school of comput...
  • 162 篇 key laboratory o...
  • 55 篇 guangdong provin...
  • 43 篇 peng cheng labor...
  • 39 篇 laboratory for a...
  • 19 篇 key laboratory o...
  • 19 篇 college of intel...
  • 17 篇 guangdong key la...
  • 16 篇 the school of co...
  • 14 篇 sun yat-sen univ...
  • 13 篇 guangdong key la...
  • 12 篇 pazhou lab
  • 12 篇 tianjin key labo...
  • 11 篇 japan advanced i...
  • 11 篇 tianjin key labo...
  • 10 篇 institute of art...
  • 10 篇 school of comput...
  • 9 篇 guangdong key la...
  • 9 篇 department of el...
  • 9 篇 tianjin key labo...

作者

  • 86 篇 zheng wei-shi
  • 33 篇 wei-shi zheng
  • 32 篇 xie xiaohua
  • 23 篇 lai jianhuang
  • 20 篇 lai jian-huang
  • 18 篇 wang ruixuan
  • 16 篇 yang lingxiao
  • 15 篇 wang chang-dong
  • 13 篇 wu xiao-ming
  • 13 篇 wu ancong
  • 12 篇 lin kun-yu
  • 12 篇 yunong zhang
  • 11 篇 hu jian-fang
  • 11 篇 lu wei
  • 10 篇 jianhuang lai
  • 10 篇 xiaohua xie
  • 10 篇 yan junkai
  • 9 篇 meng jingke
  • 9 篇 wei yi-lin
  • 8 篇 dang jianwu

语言

  • 453 篇 英文
  • 116 篇 其他
  • 3 篇 中文
检索条件"机构=The Laboratory for Advanced Computing and Intelligence Engineering"
569 条 记 录,以下是211-220 订阅
排序:
A Novel Duo-Stage driven Deep Neural Network Approach for Mitigating Electrode Shift Impact on Myoelectric Pattern Recognition Systems
A Novel Duo-Stage driven Deep Neural Network Approach for Mi...
收藏 引用
2023 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2023
作者: Kulwa, Frank Samuel, Oluwarotimi Williams Asogbon, Mojisola Grace Oyemakinde, Tolulope Tofunmi Obe, Olumide Olayinka Li, Guanglin Cas Key Laboratory of Human-Machine Intelligence-Synergy Systems SIAT-CAS China University of Chinese Academy of Sciences Shenzhen College of Advanced Technology Guangdong Shenzhen518055 China University of Derby School of Computing and Engineering DerbyDE22 3AW United Kingdom Federal University of Technology Department of Computer Science Akure Nigeria
A major barrier to the commercialization of pattern recognition (PR)-based myoelectric prostheses is the lack of robustness to confounding factors such as electrode shift which has been lingering for years. To overcom... 详细信息
来源: 评论
Can Encrypted Images Still Train Neural Networks? Investigating Image Information and Random Vortex Transformation
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Xiao-Kai Mo, Wen-Jin Wang, Chang-Dong Lai, Jian-Huang Huang, Qiong School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China College of Mathematics and Informatics South China Agricultural University Guangzhou China
Vision is one of the essential sources through which humans acquire information. To simulate this biological characteristic, researchers have proposed models such as Convolutional Neural Networks and Vision Transforme...
来源: 评论
A Compact Transformer for Adaptive Style Transfer
A Compact Transformer for Adaptive Style Transfer
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yi Li Xin Xie Haiyan Fu Xiangyang Luo Yanqing Guo School of Artificial Intelligence Dalian University of Technology Dalian China School of Information and Communication Engineering Dalian University of Technology Dalian China State Key Laboratory of Mathematical Engineering and Advanced Computing Zhengzhou China
Due to the limitation of spatial receptive field, it is challenging for CNN-based style transfer methods to capture rich and long-range semantic concepts in artworks. Though the transformer provides a fresh solution b...
来源: 评论
Focus, Distinguish, and Prompt: Unleashing CLIP for Efficient and Flexible Scene Text Retrieval
arXiv
收藏 引用
arXiv 2024年
作者: Zeng, Gangyan Zhang, Yuan Wei, Jin Yang, Dongbao Zhang, Peng Gao, Yiwen Qin, Xugong Zhou, Yu School of Cyber Science and Engineering Nanjing University of Science and Technology China State Key Laboratory of Media Convergence and Communication Communication University of China China Institute of Information Engineering Chinese Academy of Sciences China Laboratory for Advanced Computing and Intelligence Engineering China TMCC College of Computer Science Nankai University China
Scene text retrieval aims to find all images containing the query text from an image gallery. Current efforts tend to adopt an Optical Character Recognition (OCR) pipeline, which requires complicated text detection an... 详细信息
来源: 评论
Continual Learning with Bayesian Model Based on a Fixed Pre-Trained Feature Extractor
SSRN
收藏 引用
SSRN 2022年
作者: Yang, Yang Cui, Zhiying Xu, Junjie Zhong, Changhong Zheng, Wei-Shi Wang, Ruixuan School of Computer Science and Engineering Sun Yat-sen University China Key Laboratory of Machine Intelligence and Advanced Computing MOE
Deep learning has shown its human-level performance in various applications. However, current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes. This poses a ... 详细信息
来源: 评论
CroPrompt: Cross-task Interactive Prompting for Zero-shot Spoken Language Understanding
CroPrompt: Cross-task Interactive Prompting for Zero-shot Sp...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Libo Qin Fuxuan Wei Qiguang Chen Jingxuan Zhou Shijue Huang Jiasheng Si Wenpeng Lu Wanxiang Che School of Computer Science and Engineering Central South University China Key Laboratory of Data Intelligence and Advanced Computing in Provincial Universities Soochow University China Research Center for Social Computing and Information Retrieval Harbin Institute of Technology China Harbin Institute of Technology Shenzhen China Key Laboratory of Computing Power Network and Information Security Ministry of Education Qilu University of Technology (Shandong Academy of Sciences)
Slot filling and intent detection are two highly correlated tasks in spoken language understanding (SLU). Recent SLU research attempts to explore zero-shot prompting techniques in large language models to alleviate th... 详细信息
来源: 评论
VISUALLY MAINTAINED IMAGE DISTURBANCE AGAINST DEEPFAKE FACE SWAPPING
VISUALLY MAINTAINED IMAGE DISTURBANCE AGAINST DEEPFAKE FACE ...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Dong, Junhao Xie, Xiaohua School of Computer Science and Engineering Sun Yat-sen University China Guangdong Key Laboratory of Information Security Technology China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
As a deep learning-based application, DeepFake can generate malicious images or videos through replacing the face of a source image with the target face, which poses a significant threat to social media. In this paper... 详细信息
来源: 评论
Multi-scale Motion Feature Integration for Action Recognition
Multi-scale Motion Feature Integration for Action Recognitio...
收藏 引用
International Conference on Computer and Communications (ICCC)
作者: Jinming Lai Huicheng Zheng Jisheng Dang School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Guangdong Province Key Laboratory of Information Security Technology China
Analyzing video data with intricate temporal structures and extracting comprehensive motion information remains a significant challenge. In this work, we introduce the multi-scale motion feature integration (MMFI) net...
来源: 评论
GAEM: Graph-driven Attention-based Entropy Model for LiDAR Point Cloud Compression
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2025年
作者: Cui, Mingyue Zhong, Yuyang Feng, Mingjian Long, Junhua Ling, Yehua Xu, Jiahao Huang, Kai Sun Yat-sen University School of Computer Science and Engineering Guangzhou400100 China Sun Yat-sen University key Laboratory of Machine Intelligence and Advanced Computing Guangzhou400100 China Nanyang Technological University College of Computing and Data Science 639798 Singapore Guangxi Transportation Science and Technology Group Co. Ltd Nanning530029 China
High-quality LiDAR point cloud (LPC) coding is essential for efficiently transmitting and storing the vast amounts of data required for accurate 3D environmental representation. The Octree-based entropy coding framewo... 详细信息
来源: 评论
Hypergraph-Enhanced Multi-Granularity Stochastic Weight Completion in Sparse Road Networks
收藏 引用
ACM Transactions on Knowledge Discovery from Data 2025年 第3期19卷
作者: Han, Xiaolin Zhang, Yikun Ma, Chenhao Shang, Xuequn Cheng, Reynold Grubenmann, Tobias Li, Xiaodong Northwestern Polytechnical Universit China and Laboratory for Advanced Computing and Intelligence Engineering Wuxi Xi'an China Northwestern Polytechnical University Xi'an China The Chinese University of Hong Kong - Shenzhen Shenzhen China The University of Hong Kong Hong Kong Edinburgh Napier University Edinburgh United Kingdom Xiamen University China and Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen China
Road network applications, such as navigation, incident detection, and Point-of-Interest (POI) recommendation, make extensive use of network edge weights (e.g., traveling times). Some of these weights can be missing, ... 详细信息
来源: 评论