咨询与建议

限定检索结果

文献类型

  • 310 篇 期刊文献
  • 264 篇 会议

馆藏范围

  • 574 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 394 篇 工学
    • 311 篇 计算机科学与技术...
    • 270 篇 软件工程
    • 73 篇 信息与通信工程
    • 54 篇 控制科学与工程
    • 51 篇 生物工程
    • 43 篇 光学工程
    • 40 篇 电气工程
    • 34 篇 生物医学工程(可授...
    • 30 篇 电子科学与技术(可...
    • 28 篇 机械工程
    • 23 篇 化学工程与技术
    • 15 篇 土木工程
    • 14 篇 建筑学
    • 13 篇 交通运输工程
    • 12 篇 安全科学与工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 网络空间安全
    • 8 篇 仪器科学与技术
  • 209 篇 理学
    • 98 篇 数学
    • 68 篇 物理学
    • 59 篇 生物学
    • 37 篇 统计学(可授理学、...
    • 25 篇 化学
    • 15 篇 系统科学
  • 105 篇 管理学
    • 56 篇 管理科学与工程(可...
    • 47 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 27 篇 医学
    • 24 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
  • 7 篇 经济学
  • 7 篇 法学
  • 5 篇 农学
  • 4 篇 教育学

主题

  • 21 篇 semantics
  • 19 篇 training
  • 16 篇 deep learning
  • 16 篇 feature extracti...
  • 13 篇 neural networks
  • 12 篇 contrastive lear...
  • 12 篇 computational mo...
  • 10 篇 computer vision
  • 9 篇 conferences
  • 9 篇 object detection
  • 9 篇 semantic segment...
  • 9 篇 task analysis
  • 8 篇 deep neural netw...
  • 8 篇 benchmark testin...
  • 8 篇 machine learning
  • 8 篇 forecasting
  • 8 篇 data models
  • 7 篇 transformers
  • 7 篇 accuracy
  • 6 篇 three-dimensiona...

机构

  • 198 篇 school of comput...
  • 161 篇 key laboratory o...
  • 56 篇 guangdong provin...
  • 42 篇 peng cheng labor...
  • 41 篇 laboratory for a...
  • 19 篇 key laboratory o...
  • 19 篇 college of intel...
  • 17 篇 guangdong key la...
  • 16 篇 the school of co...
  • 14 篇 sun yat-sen univ...
  • 12 篇 pazhou lab
  • 12 篇 guangdong key la...
  • 12 篇 tianjin key labo...
  • 11 篇 japan advanced i...
  • 11 篇 tianjin key labo...
  • 11 篇 ministry of educ...
  • 10 篇 institute of art...
  • 10 篇 guangdong key la...
  • 9 篇 school of comput...
  • 9 篇 department of el...

作者

  • 87 篇 zheng wei-shi
  • 32 篇 wei-shi zheng
  • 32 篇 xie xiaohua
  • 24 篇 lai jianhuang
  • 20 篇 lai jian-huang
  • 19 篇 wang ruixuan
  • 16 篇 wang chang-dong
  • 16 篇 yang lingxiao
  • 13 篇 wu xiao-ming
  • 13 篇 yunong zhang
  • 13 篇 wu ancong
  • 12 篇 lin kun-yu
  • 11 篇 hu jian-fang
  • 11 篇 lu wei
  • 10 篇 yan junkai
  • 9 篇 meng jingke
  • 9 篇 jianhuang lai
  • 9 篇 wei yi-lin
  • 9 篇 xiaohua xie
  • 8 篇 dang jianwu

语言

  • 505 篇 英文
  • 69 篇 其他
  • 3 篇 中文
检索条件"机构=The Laboratory for Advanced Computing and Intelligence Engineering"
574 条 记 录,以下是241-250 订阅
排序:
MASZSL: A Multi-Block Attention-Based Description Generative Adversarial Network for Knowledge Graph Zero-Shot Relational Learning
MASZSL: A Multi-Block Attention-Based Description Generative...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Mei Yu Pengtao Fan Mankun Zhao Wenbin Zhang Yue Zhao Ming Yang Jian Yu College of Intelligence and Computing Tianjin University Tianjin China Tianjin Key Laboratory of Advanced Networking(TANK Lab) Tianjin China Tianjin Key Laboratory of Cognitive Computing and Application Tianjin China Information and Network Center Tianjin University Tianjin China College of Computing and Software Engineering Kennesaw State University Marietta GA USA
In the real world, the Knowledge Graph(KG) is dynamic and new entities are added at any time. Therefore, open-world Knowledge Graph Completion(KGC) was proposed to approach new-added entities, but previous approaches ...
来源: 评论
Combination of Translation and Rotation in Dual Quaternion Space for Temporal Knowledge Graph Completion
Combination of Translation and Rotation in Dual Quaternion S...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ruiguo Yu Tao Liu Jian Yu Wenbin Zhang Yue Zhao Ming Yang Mankun Zhao Jiujiang Guo College of Intelligence and Computing Tianjin University Tianjin China Tianjin Key Laboratory of Advanced Networking(TANK Lab) Tianjin China Tianjin Key Laboratory of Cognitive Computing and Application Tianjin China Information and Network Center Tianjin University Tianjin China College of Computing and Software Engineering Kennesaw State University Marietta GA USA
Compared with static knowledge graphs (KGs) temporal KGs record the dynamic relations between entities over time, therefore, research on temporal Knowledge Graph Completion (KGC) attracts much attention. Temporal KGs ...
来源: 评论
Interaction-Aware Cut-In Trajectory Prediction and Risk Assessment in Mixed Traffic
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2022年 第10期9卷 1752-1762页
作者: Xianglei Zhu Wen Hu Zejian Deng Jinwei Zhang Fengqing Hu Rui Zhou Keqiu Li Fei-Yue Wang the College of Intelligence and Computing Tianjin UniversityTianjin 300350 the China Automotive Technology and Research Center Co.Ltd. Tianjin 300300China the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body College of Mechanical and Vehicle EngineeringHunan UniversityChangsha 410082China the Department of Mechanical and Mechatronics Engineering University of WaterlooWaterlooON N2L3G1Canada the School of Mechanical Engineering Beijing Institute of TechnologyBeijing 100081China the Macao University of Science and Technology MacaoChina the Waytous Inc. Qingdao 266000China IEEE the State Key Laboratory of Management and Control for Complex Systems Institute of AutomationChinese Academy of SciencesBeijing 100190China
Accurately predicting the trajectories of surrounding vehicles and assessing the collision risks are essential to avoid side and rear-end collisions caused by *** improve the safety of autonomous vehicles in the mixed... 详细信息
来源: 评论
Survey on Foundation Models for Prognostics and Health Management in Industrial Cyber-Physical Systems
IEEE Transactions on Industrial Cyber-Physical Systems
收藏 引用
IEEE Transactions on Industrial Cyber-Physical Systems 2024年 2卷 264-280页
作者: Liu, Ruonan Zhang, Quanhu Han, Te Yang, Boyuan Zhang, Weidong Yin, Shen Zhou, Donghua Shanghai Jiao Tong University Department of Automation Shanghai200240 China Tianjin University College of Intelligence and Computing Tianjin300350 China Beijing Institute of Technology Center for Energy and Environmental Policy Research Beijing100081 China Beijing Institute of Technology School of Management Beijing100081 China Beijing Laboratory for System Engineering of Carbon Neutrality Beijing100081 China Nanjing University Center for Advanced Control and Smart Operations Suzhou215163 China Hainan University School of Information and Communication Engineering Haikou570228 China Shanghai Jiaotong University Department of Automation Shanghai200240 China Norwegian University of Science and Technology Trondheim7491 Norway
Industrial Cyber-Physical Systems (ICPS) integrating disciplines such as computer science, communication technology, and engineering, have become a crucial component of modern manufacturing and industry. However, ICPS... 详细信息
来源: 评论
Hard-normal Example-aware Template Mutual Matching for Industrial Anomaly Detection
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Zixuan Xie, Xiaohua Yang, Lingxiao Lai, Jian-Huang School of Computer Science and Engineering Sun Yat-sen University Guangdong Guangzhou510006 China Guangdong Province Key Laboratory of Information Security Technology China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
Anomaly detectors are widely used in industrial manufacturing to detect and localize unknown defects in query images. These detectors are trained on anomaly-free samples and have successfully distinguished anomalies f... 详细信息
来源: 评论
Estimator Meets Equilibrium Perspective: A Rectified Straight Through Estimator for Binary Neural Networks Training
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Xiao-Ming Zheng, Dian Liu, Zuhao Zheng, Wei-Shi School of Computer Science and Engineering Sun Yat-sen University China Pengcheng Lab China Guangdong Province Key Laboratory of Information Security Technology China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
Binarization of neural networks is a dominant paradigm in neural networks compression. The pioneering work BinaryConnect uses Straight Through Estimator (STE) to mimic the gradients of the sign function, but it also c... 详细信息
来源: 评论
ASAG: Building Strong One-Decoder-Layer Sparse Detectors via Adaptive Sparse Anchor Generation
arXiv
收藏 引用
arXiv 2023年
作者: Fu, Shenghao Yan, Junkai Gao, Yipeng Xie, Xiaohua Zheng, Wei-Shi School of Computer Science and Engineering Sun Yat-sen University China Pengcheng Lab China Guangdong Province Key Laboratory of Information Security Technology China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
Recent sparse detectors with multiple, e.g. six, decoder layers achieve promising performance but much inference time due to complex heads. Previous works have explored using dense priors as initialization and built o... 详细信息
来源: 评论
Benchmarking Deep Models on Salient Object Detection
SSRN
收藏 引用
SSRN 2023年
作者: Zhou, Huajun Lin, Yang Yang, Lingxiao Lai, Jianhuang Xie, Xiaohua School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangdong Province Key Laboratory of Information Security Technology Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Guangzhou China
Deep network-based methods have continuously refreshed state-of-the-art performance on the Salient Object Detection (SOD) task. However, the performance discrepancy caused by different implementation details may conce... 详细信息
来源: 评论
ASAG: Building Strong One-Decoder-Layer Sparse Detectors via Adaptive Sparse Anchor Generation
ASAG: Building Strong One-Decoder-Layer Sparse Detectors via...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Shenghao Fu Junkai Yan Yipeng Gao Xiaohua Xie Wei-Shi Zheng School of Computer Science and Engineering Sun Yat-sen University China Guangdong Province Key Laboratory of Information Security Technology China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Pengcheng Lab China
Recent sparse detectors with multiple, e.g. six, decoder layers achieve promising performance but much inference time due to complex heads. Previous works have explored using dense priors as initialization and built o...
来源: 评论
MLNet: Mutual Learning Network with Neighborhood Invariance for Universal Domain Adaptation
arXiv
收藏 引用
arXiv 2023年
作者: Lu, Yanzuo Shen, Meng Ma, Andy J. Xie, Xiaohua Lai, Jian-Huang School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangdong Province Key Laboratory of Information Security Technology China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Guangzhou China
Universal domain adaptation (UniDA) is a practical but challenging problem, in which information about the relation between the source and the target domains is not given for knowledge transfer. Existing UniDA methods... 详细信息
来源: 评论