咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 56 篇 控制科学与工程
    • 56 篇 软件工程
    • 16 篇 生物工程
    • 13 篇 机械工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 6 篇 trajectory
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 4 篇 uncertainty
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 robot sensing sy...
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 5 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 109 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"机构=The Learning Systems and Robotics Lab"
118 条 记 录,以下是1-10 订阅
排序:
Safe Multi-Agent Reinforcement learning for Behavior-Based Cooperative Navigation
收藏 引用
IEEE robotics and Automation Letters 2025年 第6期10卷 6256-6263页
作者: Dawood, Murad Pan, Sicong Dengler, Nils Zhou, Siqi Schoellig, Angela P. Bennewitz, Maren University of Bonn Humanoid Robots Lab Bonn53113 Germany Lamarr Institute for Machine Learning and Artificial Intelligence The Center for Robotics Bonn53113 Germany Technical University of Munich Learning Systems and Robotics Lab Munchen80333 Germany
In this letter, we address the problem of behavior-based cooperative navigation of mobile robots usingsafe multi-agent reinforcement learning (MARL). Our work is the first to focus on cooperative navigation without in... 详细信息
来源: 评论
Leveraging Pretrained Latent Representations for Few-Shot Imitation learning on an Anthropomorphic Robotic Hand  23
Leveraging Pretrained Latent Representations for Few-Shot Im...
收藏 引用
23rd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2024
作者: Liconti, Davide Toshimitsu, Yasunori Katzschmann, Robert Eth Zurich Soft Robotics Lab Iris D-MAVT Switzerland Max Plank Eth Center for Learning Systems Germany
In the context of imitation learning applied to anthropomorphic robotic hands, the high complexity of the systems makes learning complex manipulation tasks challenging. However, the numerous datasets depicting human h... 详细信息
来源: 评论
learning More With Less: Sample Efficient Dynamics learning and Model-Based RL for Loco-Manipulation
arXiv
收藏 引用
arXiv 2025年
作者: Hoffman, Benjamin Cheng, Jin Li, Chenhao Coros, Stelian ETH Zurich Switzerland Computational Robotics Lab The Learning and Adaptive Systems Group Robotic Systems Lab ETH Zurich Switzerland
Combining the agility of legged locomotion with the capabilities of manipulation, loco-manipulation platforms have the potential to perform complex tasks in real-world applications. To this end, state-of-the-art quadr... 详细信息
来源: 评论
Diffusion Predictive Control with Constraints
arXiv
收藏 引用
arXiv 2024年
作者: Römer, Ralf von Rohr, Alexander Schoellig, Angela P. Learning Systems and Robotics Lab Technical University of Munich Munich80333 Germany Germany
Diffusion models have recently gained popularity for policy learning in robotics due to their ability to capture high-dimensional and multimodal distributions. However, diffusion policies are inherently stochastic and... 详细信息
来源: 评论
Sensor Query Schedule and Sensor Noise Covariances for Accuracy-constrained Trajectory Estimation
收藏 引用
IEEE robotics and Automation Letters 2025年 第7期10卷 6983-6990页
作者: Goudar, Abhishek Schoellig, Angela P. Technical University of Munich Learning Systems and Robotics Lab Germany University of Toronto Institute for Aerospace Studies Canada Vector Institute for Artificial Intelligence Canada
Trajectory estimation involves determining the trajectory of a mobile robot by combining prior knowledge about its dynamic model with noisy observations of its state obtained using sensors. The accuracy of such a proc... 详细信息
来源: 评论
Automated Planning Domain Inference for Task and Motion Planning
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Jinbang Tao, Allen Marco, Rozilyn Bogdanovic, Miroslav Kelly, Jonathan Shkurti, Florian Space and Terrestrial Autonomous Systems Lab Canada Robot Vision and Learning Lab University of Toronto Robotics Institute Canada
Task and motion planning (TAMP) frameworks address long and complex planning problems by integrating high-level task planners with low-level motion planners. However, existing TAMP methods rely heavily on the manual d... 详细信息
来源: 评论
Is Data All That Matters? the Role of Control Frequency for learning-Based Sampled-Data Control of Uncertain systems
Is Data All That Matters? the Role of Control Frequency for ...
收藏 引用
American Control Conference (ACC)
作者: Ralf Römer Lukas Brunke Siqi Zhou Angela P. Schoellig Learning Systems and Robotics Lab (***) School of Computation Information and Technology and the Munich Institute for Robotics and Machine Intelligence (MIRMI) Technical University of Munich Germany
learning models or control policies from data has become a powerful tool to improve the performance of uncertain systems. While a strong focus has been placed on increasing the amount and quality of data to improve pe... 详细信息
来源: 评论
Safety Filtering While Training: Improving the Performance and Sample Efficiency of Reinforcement learning Agents
arXiv
收藏 引用
arXiv 2024年
作者: Bejarano, Federico Pizarro Brunke, Lukas Schoellig, Angela P. The Learning Systems and Robotics Lab University of Toronto Canada The University of Toronto Robotics Institute The Vector Institute for Artificial Intelligence Toronto Canada Germany
Reinforcement learning (RL) controllers are flexible and performant but rarely guarantee safety. Safety filters impart hard safety guarantees to RL controllers while maintaining flexibility. However, safety filters ca... 详细信息
来源: 评论
Practical Considerations for Discrete-Time Implementations of Continuous-Time Control Barrier Function-Based Safety Filters
arXiv
收藏 引用
arXiv 2024年
作者: Brunke, Lukas Zhou, Siqi Che, Mingxuan Schoellig, Angela P. The Learning Systems and Robotics Lab The Technical University of Munich Germany The University of Toronto Canada The University of Toronto Robotics Institute The Vector Institute for Artificial Intelligence Canada
Safety filters based on control barrier functions (CBFs) have become a popular method to guarantee safety for uncertified control policies, e.g., as resulting from reinforcement learning. Here, safety is defined as st... 详细信息
来源: 评论
Leveraging Pretrained Latent Representations for Few-Shot Imitation learning on an Anthropomorphic Robotic Hand
Leveraging Pretrained Latent Representations for Few-Shot Im...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Davide Liconti Yasunori Toshimitsu Robert Katzschmann D-MAVT Soft Robotics Lab IRIS ETH Zurich Switzerland Max Plank ETH Center for Learning Systems
In the context of imitation learning applied to anthropomorphic robotic hands, the high complexity of the systems makes learning complex manipulation tasks challenging. However, the numerous datasets depicting human h... 详细信息
来源: 评论