咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 56 篇 控制科学与工程
    • 56 篇 软件工程
    • 16 篇 生物工程
    • 13 篇 机械工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 6 篇 trajectory
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 4 篇 uncertainty
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 robot sensing sy...
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 5 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 109 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"机构=The Learning Systems and Robotics Lab"
118 条 记 录,以下是111-120 订阅
排序:
Caging Complex Objects with Geodesic Balls
Caging Complex Objects with Geodesic Balls
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and systems
作者: Dmitry Zarubin Florian T. Pokorny Marc Toussaint Danica Kragic Machine Learning and Robotics Lab Universitat Stuttgart Stuttgart Germany Centre for Autonomous Systems Computer Vision and Active Perception Lab School of Computer Science and Communication KTH Royal Institute of Technology Stockholm Sweden
This paper proposes a novel approach for the synthesis of grasps of objects whose geometry can be observed only in the presence of noise. We focus in particular on the problem of generating caging grasps with a realis... 详细信息
来源: 评论
25th Annual Computational Neuroscience Meeting CNS-2016, Seogwipo City, South Korea, July 2-7, 2016 Abstracts
收藏 引用
BMC NEUROSCIENCE 2016年 第1期17卷 1-112页
作者: [Anonymous] Computational Neurobiology Laboratory The Salk Institute for Biological Studies San Diego USA UNIC CNRS Gif sur Yvette France The European Institute for Theoretical Neuroscience (EITN) Paris France ATR Computational Neuroscience Laboratories Kyoto Japan Krembil Research Institute University Health Network Toronto Canada Department of Physiology University of Toronto Toronto Canada Department of Medicine (Neurology) University of Toronto Toronto Canada Department of Physics University of New Hampshire Durham USA Department of Neurophysiology Nencki Institute of Experimental Biology Warsaw Poland Department of Theory Wigner Research Centre for Physics of the Hungarian Academy of Sciences Budapest Hungary Department of Mathematical Sciences KAIST Daejoen Republic of Korea Department of Mathematics University of Houston Houston USA Department of Biochemistry & Cell Biology and Institute of Biosciences and Bioengineering Rice University Houston USA Department of Biology and Biochemistry University of Houston Houston USA Grupo de Neurocomputación Biológica Dpto. de Ingeniería Informática Escuela Politécnica Superior Universidad Autónoma de Madrid Madrid Spain Department of Biological Sciences University of Southern California Los Angeles USA Center for Neuroscience Korea Institute of Science and Technology Seoul South Korea Department of Neurology Albert Einstein College of Medicine Bronx USA Center for Neuroscience KIST Seoul South Korea Department of Neuroscience University of Science and Technology Daejon South Korea Systems Neuroscience Group QIMR Berghofer Medical Research Institute Herston Australia Department of Psychology Yonsei University Seoul South Korea Department of Psychiatry Kyung Hee University Hospital at Gangdong Seoul South Korea Department of Psychiatry Veterans Administration Boston Healthcare System and Harvard Medical School Brockton USA Department of Electrical and Electronic Engineering The University of Melbourne Parkvil
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mits...
来源: 评论
Recurrent neural state estimation in domains with long-term dependencies  20th
Recurrent neural state estimation in domains with long-term ...
收藏 引用
20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine learning, ESANN 2012
作者: Duell, Siegmund Weichbrodt, Lina Hans, Alexander Udluft, Steffen Siemens AG Corporate Technology Intelligent Systems and Control Otto-Hahn-Ring 6 Munich81739 Germany Berlin University of Technology Machine Learning Franklinstr. 28-29 Berlin10587 Germany Otto-von-Guericke-University Magdeburg P.O.Box 4120 Magdeburg39016 Germany Ilmenau University of Technology Neuroinformatics and Cognitive Robotics Lab P.O.Box 100565 Ilmenau98684 Germany
This paper presents a state estimation approach for reinforcement learning (RL) of a partially observable Markov decision process. It is based on a special recurrent neural network architecture, the Markov decision pr... 详细信息
来源: 评论
Agent self-assessment: Determining policy quality without execution
Agent self-assessment: Determining policy quality without ex...
收藏 引用
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement learning
作者: Hans, Alexander Duell, Siegmund Udluft, Steffen Neuroinformatics and Cognitive Robotics Lab Ilmenau University of Technology Ilmenau Germany Machine Learning Group Berlin Institute of Technology Berlin Germany Intelligent Systems and Control Siemens AG Corporate Technology Munich Munich Germany
With the development of data-efficient reinforcement learning (RL) methods, a promising data-driven solution for optimal control of complex technical systems has become available. For the application of RL to a techni... 详细信息
来源: 评论
Control of legged robots with optimal distribution of contact forces
Control of legged robots with optimal distribution of contac...
收藏 引用
2011 11th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS 2011
作者: Righetti, Ludovic Buchli, Jonas Mistry, Michael Schaal, Stefan Computational Learning and Motor Control Lab. University of Southern California Los Angeles CA 90089 United States Max Planck Institute for Intelligent Systems Tübingen Germany Dept. of Advanced Robotics Italian Institute of Technology Genoa Italy Disney Research Pittsburgh Pittsburgh PA 15213 United States
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of cruc... 详细信息
来源: 评论
Reports of the AAAI 2011 conference workshops
Reports of the AAAI 2011 conference workshops
收藏 引用
作者: Agmon, Noa Agrawal, Vikas Aha, David W. Aloimonos, Yiannis Buckley, Donagh Doshi, Prashant Geib, Christopher Grasso, Floriana Green, Nancy Johnston, Benjamin Kaliski, Burt Kiekintveld, Christopher Law, Edith Lieberman, Henry Mengshoel, Ole J. Metzler, Ted Modayil, Joseph Oard, Douglas W. Onder, Nilufer O'Sullivan, Barry Pastra, Katerina Precup, Doina Ramachandran, Sowmya Reed, Chris Sariel-Talay, Sanem Selker, Ted Shastri, Lokendra Singh, Satinder Smith, Stephen F. Srivastava, Siddharth Sukthankar, Gita Uthus, David C. Williams, Mary-Anne Department of Computer Science University of Texas at Austin United States Center for Knowledge Driven Information Systems Infosys Labs India Adaptive Systems Section Naval Research Laboratory Washington DC United States Department of Computer Science University of Maryland College Park United States EMC's Center of Excellence in Ireland Research Europe at EMC Ireland Department of Computer Science University of Georgia United States School of Informatics University of Edinburgh United Kingdom Department of Computer Science University of Liverpool United Kingdom Department of Computer Science University of North Carolina Greensboro United States Faculty of Engineering and Information Technology University of Technology Sydney Australia VeriSign Inc. United States Department of Computer Science University of Texas at El Paso United States Machine Learning Department Carnegie Mellon University United States Massachusetts Institute of Technology Media Laboratory United States Carnegie Mellon University's Silicon Valley Campus United States Darrell W. Hughes Program for Religion and Science Dialogue Oklahoma City University United States Department of Computing Science University of Alberta Canada College of Information Studies Institute for Advanced Computer Studies University of Maryland College Park United States Department of Computer Science Michigan Technological University United States Department of Computer Science University College Cork Ireland Cognitive Systems Research Insitute Athens Greece School of Computer Science McGill University Canada Stottler Henke Inc. United States School of Computing University of Dundee United Kingdom Department of Computer Engineering Istanbul Technical University Turkey Convergence Lab Infosys Technologies Ltd. United States Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor United States Robotics Institute Carnegie Mellon University United States University of Wisconsin
The AAAI-11 workshop program was held Sunday and Monday, August 7-18, 2011, at the Hyatt Regency San Francisco in San Francisco, California USA. The AAAI-11 workshop program included 15 workshops covering a wide range... 详细信息
来源: 评论
Reports of the AAAI 2010 spring symposia
Reports of the AAAI 2010 spring symposia
收藏 引用
作者: Barkowsky, Thomas Bertel, Sven Broz, Frank Chaudhri, Vinay K. Eagle, Nathan Genesereth, Michael Halpin, Harry Hamner, Emily Hoffmann, Gabe Hölscher, Christoph Horvitz, Eric Lauwers, Tom McGuinness, Deborah L. Michalowski, Marek Mower, Emily Shipley, Thomas F. Stubbs, Kristen Vogl, Roland Williams, Mary-Anne Cognitive Systems Group University of Bremen Research Center SFB/TR 8 Spatial Cognition Germany Human Factors Division Beckman Institute for Advanced Science and Technology University of Illinois Urbana-Champaign IL United States Adaptive Systems Research Group Computer Science Department University of Hertfordshire United Kingdom Artificial Intelligence Center at SRI International United States Txteagle Inc. MIT Media Laboratory United States Computer Science Department Stanford University United States University of Edinburgh United Kingdom Robotics Institute Carnegie Mellon University United States Palo Alto Research Center United States Center for Cognitive Science University of Freiburg Germany CREATE lab Carnegie Mellon Robotics Institute United States Rensselaer Polytechnic Institute United States University of Southern California United States Department of Psychology Temple University Spatial Intelligence and Learning Center United States IRobot Corporation United States Stanford Program in Law Science and Technology Stanford University Law School United States Innovation and Enterprise Research Laboratory University of Technology Sydney Australia
The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2010 Spring Symposium Series Monday through Wednesday, March ... 详细信息
来源: 评论
The Markov decision process extraction network
The Markov decision process extraction network
收藏 引用
18th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine learning, ESANN 2010
作者: Duell, Siegmund Hans, Alexander Udluft, Steffen Siemens AG Corporate Research and Technologies Learning Systems Otto-Hahn-Ring 6 D-81739 Munich Germany Berlin University of Technology Machine Learning Franklinstr. 28-29 D-10587 Berlin Germany Ilmenau University of Technology Neuroinformatics and Cognitive Robotics Lab P.O.Box 100565 D-98684 Ilmenau Germany
This paper presents the Markov decision process extraction network, which is a data-efficient, automatic state estimation approach for discrete-time reinforcement learning (RL) based on recurrent neural networks. The ... 详细信息
来源: 评论