咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 56 篇 控制科学与工程
    • 56 篇 软件工程
    • 16 篇 生物工程
    • 13 篇 机械工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 6 篇 trajectory
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 4 篇 uncertainty
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 robot sensing sy...
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 5 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 109 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"机构=The Learning Systems and Robotics lab"
118 条 记 录,以下是41-50 订阅
排序:
GO-VMP: Global Optimization for View Motion Planning in Fruit Mapping
arXiv
收藏 引用
arXiv 2025年
作者: Jose, Allen Isaac Pan, Sicong Zaenker, Tobias Menon, Rohit Houben, Sebastian Bennewitz, Maren Bonn-Rhein-Sieg University of Applied Sciences Germany Humanoid Robots Lab University of Bonn Germany Fraunhofer Institute for Intelligent Analysis and Information Systems Germany Humanoid Robots Lab University of Bonn Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Germany
Automating labor-intensive tasks such as crop monitoring with robots is essential for enhancing production and conserving resources. However, autonomously monitoring horticulture crops remains challenging due to their... 详细信息
来源: 评论
Self-Supervised learning of Scene-Graph Representations for Robotic Sequential Manipulation Planning  4
Self-Supervised Learning of Scene-Graph Representations for ...
收藏 引用
4th Conference on Robot learning, CoRL 2020
作者: Nguyen, Son-Tung Oguz, Ozgur S. Hartmann, Valentin N. Toussaint, Marc Machine Learning & Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems Germany Learning and Intelligent Systems Group TU Berlin Germany
We present a self-supervised representation learning approach for visual reasoning and integrate it into a nonlinear program formulation for motion optimization to tackle sequential manipulation tasks. Such problems h... 详细信息
来源: 评论
learning to execute: efficiently learning universal plan-conditioned policies in robotics  21
Learning to execute: efficiently learning universal plan-con...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing systems
作者: Ingmar Schubert Danny Driess Ozgur S. Oguz Marc Toussaint Learning and Intelligent Systems Group TU Berlin Germany Machine Learning and Robotics Lab University of Stuttgart Germany
Applications of Reinforcement learning (RL) in robotics are often limited by high data demand. On the other hand, approximate models are readily available in many robotics scenarios, making model-based approaches like...
来源: 评论
learning to execute: Efficiently learning universal plan-conditioned policies in robotics
arXiv
收藏 引用
arXiv 2021年
作者: Schubert, Ingmar Driess, Danny Oguz, Ozgur S. Toussaint, Marc Learning and Intelligent Systems Group Tu Berlin Germany Machine Learning and Robotics Lab University of Stuttgart Germany
Applications of Reinforcement learning (RL) in robotics are often limited by high data demand. On the other hand, approximate models are readily available in many robotics scenarios, making model-based approaches like... 详细信息
来源: 评论
Co-Optimizing Robot, Environment, and Tool Design via Joint Manipulation Planning
Co-Optimizing Robot, Environment, and Tool Design via Joint ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Toussaint Jung-Su Ha Ozgur S. Oguz Learning & Intelligent Systems Lab TU Berlin Germany Max Planck Institute for Intelligent Systems Germany Machine Learning & Robotics Lab University of Stuttgart Germany
Existing work on sequential manipulation planning and trajectory optimization typically assumes the robot, environment and tools to be given. However, in particular in industrial applications, it is highly interesting... 详细信息
来源: 评论
learning Efficient Constraint Graph Sampling for Robotic Sequential Manipulation
Learning Efficient Constraint Graph Sampling for Robotic Seq...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Joaquim Ortiz-Haro Valentin N. Hartmann Ozgur S. Oguz Marc Toussaint Machine Learning & Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Germany Max Planck Institute for Intelligent Systems Germany
Efficient sampling from constraint manifolds, and thereby generating a diverse set of solutions for feasibility problems, is a fundamental challenge. We consider the case where a problem is factored, that is, the unde... 详细信息
来源: 评论
Deep 6-DoF Tracking of Unknown Objects for Reactive Grasping
Deep 6-DoF Tracking of Unknown Objects for Reactive Grasping
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Tuscher Julian Hörz Danny Driess Marc Toussaint sereact Machine Learning and Robotics Lab University of Stuttgart Max-Planck Institute for Intelligent Systems Stuttgart Learning and Intelligent Systems TU Berlin
Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of r... 详细信息
来源: 评论
Preventing Unconstrained CBF Safety Filters Caused by Invalid Relative Degree Assumptions
arXiv
收藏 引用
arXiv 2024年
作者: Brunke, Lukas Zhou, Siqi Schoellig, Angela P. Learning Systems and Robotics Lab The Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich80333 Germany University of Toronto Institute for Aerospace Studies North YorkONM3H 5T6 Canada University of Toronto Robotics Institute TorontoONM5S 1A4 Canada Vector Institute for Artificial Intelligence TorontoONM5G 0C6 Canada
Control barrier function (CBF)-based safety filters are used to certify and modify potentially unsafe control inputs to a system such as those provided by a reinforcement learning agent or a non-expert user. In this c... 详细信息
来源: 评论
Context-Based Meta Reinforcement learning for Robust and Adaptable Peg-in-Hole Assembly Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Shokry, Ahmed Gomaa, Walid Zaenker, Tobias Dawood, Murad Maged, Shady A. Awad, Mohammed I. Bennewitz, Maren Humanoid Robots Lab University of Bonn the Center for Robotics Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany Cyber Physical Systems Lab Egypt Japan University of Science and Technology Alexandria Egypt Faculty of Engineering Alexandria University Alexandria Egypt Mechatronics Department Ain Shams University Cairo Egypt
Peg-in-hole assembly in unknown environments is a challenging task due to onboard sensor errors, which result in uncertainty and variations in task parameters such as the hole position and orientation. Meta Reinforcem... 详细信息
来源: 评论
Semantically Safe Robot Manipulation: From Semantic Scene Understanding to Motion Safeguards
arXiv
收藏 引用
arXiv 2024年
作者: Brunke, Lukas Zhang, Yanni Römer, Ralf Naimer, Jack Staykov, Nikola Zhou, Siqi Schoellig, Angela P. The Learning Systems and Robotics Lab The Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich80333 Germany University of Toronto Institute for Aerospace Studies North YorkONM3H 5T6 Canada University of Toronto Robotics Institute TorontoONM5S 1A4 Canada Vector Institute for Artificial Intelligence TorontoONM5G 0C6 Canada
Ensuring safe interactions in human-centric environments requires robots to understand and adhere to constraints recognized by humans as "common sense" (e.g., "moving a cup of water above a laptop is un... 详细信息
来源: 评论