咨询与建议

限定检索结果

文献类型

  • 719 篇 会议
  • 528 篇 期刊文献

馆藏范围

  • 1,247 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 815 篇 工学
    • 440 篇 计算机科学与技术...
    • 367 篇 软件工程
    • 247 篇 控制科学与工程
    • 133 篇 生物工程
    • 117 篇 电气工程
    • 113 篇 生物医学工程(可授...
    • 100 篇 机械工程
    • 90 篇 信息与通信工程
    • 83 篇 电子科学与技术(可...
    • 64 篇 光学工程
    • 46 篇 化学工程与技术
    • 37 篇 仪器科学与技术
    • 34 篇 力学(可授工学、理...
    • 34 篇 材料科学与工程(可...
    • 23 篇 航空宇航科学与技...
    • 21 篇 动力工程及工程热...
    • 16 篇 交通运输工程
  • 504 篇 理学
    • 285 篇 数学
    • 148 篇 生物学
    • 115 篇 物理学
    • 103 篇 系统科学
    • 71 篇 统计学(可授理学、...
    • 41 篇 化学
  • 171 篇 管理学
    • 128 篇 管理科学与工程(可...
    • 44 篇 图书情报与档案管...
    • 33 篇 工商管理
  • 64 篇 医学
    • 57 篇 临床医学
    • 38 篇 基础医学(可授医学...
    • 36 篇 药学(可授医学、理...
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 12 篇 法学
  • 12 篇 农学
  • 5 篇 文学
  • 3 篇 教育学
  • 3 篇 军事学
  • 2 篇 艺术学

主题

  • 32 篇 feature extracti...
  • 29 篇 training
  • 25 篇 image processing
  • 23 篇 computational mo...
  • 23 篇 machine learning
  • 22 篇 neurons
  • 22 篇 multi-agent syst...
  • 20 篇 mathematical mod...
  • 18 篇 electroencephalo...
  • 17 篇 multi agent syst...
  • 16 篇 intelligent cont...
  • 15 篇 image segmentati...
  • 15 篇 robustness
  • 14 篇 neural networks
  • 14 篇 laboratories
  • 14 篇 pattern recognit...
  • 13 篇 object detection
  • 13 篇 support vector m...
  • 13 篇 semantics
  • 12 篇 convolution

机构

  • 79 篇 school of artifi...
  • 69 篇 key laboratory o...
  • 59 篇 school of automa...
  • 51 篇 key laboratory o...
  • 41 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 34 篇 shenzhen huazhon...
  • 26 篇 department of co...
  • 26 篇 key laboratory o...
  • 25 篇 alibaba group
  • 23 篇 key laboratory o...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 13 篇 school of artifi...
  • 13 篇 school of automa...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...

作者

  • 65 篇 wu dongrui
  • 61 篇 sang nong
  • 52 篇 gao changxin
  • 48 篇 zeng zhigang
  • 47 篇 zhigang zeng
  • 40 篇 jian huang
  • 37 篇 pan linqiang
  • 34 篇 huang jian
  • 33 篇 cao zhiguo
  • 32 篇 yongji wang
  • 30 篇 hai-tao zhang
  • 29 篇 wang yongji
  • 26 篇 housheng su
  • 24 篇 su housheng
  • 24 篇 wang xiang
  • 23 篇 xi li
  • 23 篇 zhang shiwei
  • 19 篇 ding mingyue
  • 19 篇 li wei
  • 19 篇 nong sang

语言

  • 1,169 篇 英文
  • 46 篇 其他
  • 32 篇 中文
检索条件"机构=The MOE Key Laboratory of Image Processing and Intelligent Control"
1247 条 记 录,以下是531-540 订阅
排序:
A Multi-Channel Multi-Head CNN Framework for Fault Classification in Industrial Process
A Multi-Channel Multi-Head CNN Framework for Fault Classific...
收藏 引用
Data Driven control and Learning Systems (DDCLS)
作者: Hui Wu Yan Wang Junyu Lin Weidong Yang Yanwei Wang Ying Zheng The Key Laboratory of Image Information Processing and Intelligent Control Huazhong University of Science and Technology Wuhan China Zhengzhou University of Light Industry Zhengzhou China Wuhan Institute of Technology Wuhan China
This paper proposes a novel fault classification method via convolutional neural network with multi-channel and multi-head along the time dimension, which is defined as MM-CNN. The MM-CNN extracts features of industri... 详细信息
来源: 评论
Black-box domain adaptation for cross-domain on-device machinery fault diagnosis via hierarchical debiased self-supervised learning
收藏 引用
Knowledge-Based Systems 2025年 324卷
作者: Mengliang Zhu Jie Liu Yanglong Lu Zhongxu Hu Li Yuan Kaibo Zhou MOE Key Laboratory of Image Information Processing and Intelligent Control Belt and Road Joint Laboratory on Measurement and Control Technology School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan 430074 China National Center of Technology Innovation for Digital Construction School of Civil and Hydraulic Engineering Huazhong University of Science and Technology Wuhan 430074 China Department of Mechanical and Aerospace Engineering The Hong Kong University of Science and Technology Clear Water Bay Hong Kong SAR China School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
This paper explores black-box domain adaptation (BBDA) for cross-domain on-device machinery fault diagnosis. Specifically, a pre-trained black-box source model is deployed on a cloud platform with only its input-outpu... 详细信息
来源: 评论
A polynomial chaos approach to robust H∞ static output-feedback control with bounded truncation error
arXiv
收藏 引用
arXiv 2021年
作者: Wan, Yiming Shen, Dongying E. Lucia, Sergio Findeisen, Rolf Braatz, Richard D. Artificial Intelligence and Automation Huazhong University of Science and Technology Key Laboratory of Image Processing and Intelligent Control Ministry of Education Wuhan430074 China Massachusetts Institute of Technology 77 Massachusetts Avenue CambridgeMA02139 United States TU Dortmund University Dortmund44227 Germany Otto-von-Guericke University Magdeburg Magdeburg39106 Germany
This article considers the H∞ static output-feedback control for linear time-invariant uncertain systems with polynomial dependence on probabilistic time-invariant parametric uncertainties. By applying polynomial cha... 详细信息
来源: 评论
Hand Gesture Recognition Based on Multi-Classification Adaptive Neuro-Fuzzy Inference System and pMMG
Hand Gesture Recognition Based on Multi-Classification Adapt...
收藏 引用
International Conference on Advanced Robotics and Mechatronics (ICARM)
作者: Lei Wang Jian Huang Dongrui Wu Tao Duan Rui Zong Shicong Jiang Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Laboratory for Economics and Computation City University of Hong Kong Kowloon Hong Kong SAR China
In this paper, a multi-classification adaptive neuro-fuzzy inference system combining neural-network and a TSK fuzzy system is proposed to recognize six commonly used gestures. Several techniques including mini-batch ... 详细信息
来源: 评论
Resilient Distributed Predefined Time Secondary control for Cyber-Physical Microgrids
收藏 引用
IET Renewable Power Generation 2025年 第1期19卷
作者: Junfeng Tan Fan Zhang Yanlu Huang Shuai Zhao Hongyu Su China Southern Power Grid Digital Grid Research Institute Co. Ltd. China Southern Power Grid Artificial Intelligence Technology Co. Ltd. Guangzhou China School of Artificial Intelligence and Automation and Technology and also with the Key Laboratory of Image Processing and Intelligent Control Ministry of Education Huazhong University of Science and Technology Wuhan China
This paper proposed a resilient distributed predefined-time sliding mode control for islanded AC microgrids with external disturbances caused by noisy circumstances or cyber-attacks. By utilizing the predefined-time c... 详细信息
来源: 评论
Pool-Based Unsupervised Active Learning for Regression Using Iterative Representativeness-Diversity Maximization (iRDM)
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ziang Jiang, Xue Luo, Hanbin Fang, Weili Liu, Jiajing Wu, Dongrui Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology China School of Civil Engineering and Mechanics Huazhong University of Science and Technology China
Active learning (AL) selects the most beneficial unlabeled samples to label, and hence a better machine learning model can be trained from the same number of labeled samples. Most existing active learning for regressi... 详细信息
来源: 评论
Transfer Learning for Motor imagery Based Brain-Computer Interfaces: A Complete Pipeline
arXiv
收藏 引用
arXiv 2020年
作者: Wu, Dongrui Jiang, Xue Peng, Ruimin Kong, Wanzeng Huang, Jian Zeng, Zhigang Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Zhejiang Key Laboratory for Brain-Machine Collaborative Intelligence Hangzhou Dianzi University Hangzhou310018 China
Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject, and demonstrated promising performance. While a closed-loop ... 详细信息
来源: 评论
Closer to Pre-trained Network Transfer Better
Closer to Pre-trained Network Transfer Better
收藏 引用
IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC)
作者: Siyu Chen Wei Li School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan People’s Republic of China Image Processing and Intelligent Control Key Laboratory Education Ministry of China Wuhan People’s Republic of China
In recent years, Deep Neural Network (DNN) has been widely used in the domain of computer vision, but its further development is restricted because of the lack of train samples. Fine-tuning is one of deep transfer lea... 详细信息
来源: 评论
NiuEM: A Nested-iterative Unsupervised Learning Model for Single-particle Cryo-EM image processing
NiuEM: A Nested-iterative Unsupervised Learning Model for Si...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Rui Hu Jiaming Cai Wangjie Zheng Yang Yang Hong-Bin Shen Shanghai Jiao Tong University and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Shanghai Jiao Tong University Shanghai China
Cryo-electron microscopy (cryo-EM) has become a mainstream technology for solving spatial structures of biomacromolecules, while the processing of cryo-EM images is a very challenging task. One of the great challenges... 详细信息
来源: 评论
A survey on negative transfer
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Wen Deng, Lingfei Zhang, Lei Wu, Dongrui the Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China the School of Microelectronics and Communication Engineering Chongqing University Chongqing400044 China
—Transfer learning (TL) utilizes data or knowledge from one or more source domains to facilitate the learning in a target domain. It is particularly useful when the target domain has very few or no labeled data, due ... 详细信息
来源: 评论