咨询与建议

限定检索结果

文献类型

  • 82 篇 会议
  • 53 篇 期刊文献

馆藏范围

  • 135 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 85 篇 工学
    • 62 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 43 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 仪器科学与技术
    • 10 篇 生物工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 信息与通信工程
    • 4 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
  • 41 篇 理学
    • 27 篇 数学
    • 11 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 8 篇 物理学
    • 7 篇 系统科学
    • 3 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 14 篇 planning
  • 9 篇 reinforcement le...
  • 9 篇 trajectory
  • 8 篇 robots
  • 6 篇 optimization
  • 5 篇 motion planning
  • 5 篇 robot sensing sy...
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 4 篇 task analysis
  • 4 篇 adversarial mach...
  • 4 篇 kinematics
  • 4 篇 measurement
  • 4 篇 training
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 programming
  • 3 篇 biomechanics
  • 3 篇 computational mo...

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 fraunhofer iosb ...
  • 3 篇 lamarr institute...
  • 3 篇 technische unive...
  • 3 篇 vision and fusio...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...
  • 2 篇 institute for co...
  • 2 篇 learning and int...

作者

  • 44 篇 toussaint marc
  • 27 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter
  • 3 篇 qin zengchang

语言

  • 130 篇 英文
  • 5 篇 其他
检索条件"机构=The Machine Learning and Robotics Lab"
135 条 记 录,以下是1-10 订阅
排序:
Safe Multi-Agent Reinforcement learning for Behavior-Based Cooperative Navigation
收藏 引用
IEEE robotics and Automation Letters 2025年 第6期10卷 6256-6263页
作者: Dawood, Murad Pan, Sicong Dengler, Nils Zhou, Siqi Schoellig, Angela P. Bennewitz, Maren University of Bonn Humanoid Robots Lab Bonn53113 Germany Lamarr Institute for Machine Learning and Artificial Intelligence The Center for Robotics Bonn53113 Germany Technical University of Munich Learning Systems and Robotics Lab Munchen80333 Germany
In this letter, we address the problem of behavior-based cooperative navigation of mobile robots usingsafe multi-agent reinforcement learning (MARL). Our work is the first to focus on cooperative navigation without in... 详细信息
来源: 评论
FunGraph: Functionality Aware 3D Scene Graphs for Language-Prompted Scene Interaction
arXiv
收藏 引用
arXiv 2025年
作者: Rotondi, Dennis Scaparro, Fabio Blum, Hermann Arras, Kai O. Socially Intelligent Robotics Lab Institute for Artificial Intelligence University of Stuttgart Germany Robot Perception and Learning Lab LAMARR Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
The concept of 3D scene graphs is increasingly recognized as a powerful semantic and hierarchical representation of the environment. Current approaches often address this at a coarse, object-level resolution. In contr... 详细信息
来源: 评论
Pedestrians and Robots: A Novel Dataset for learning Distinct Social Navigation Forces
arXiv
收藏 引用
arXiv 2025年
作者: Agrawal, Subham Ostermann-Myrau, Nico Dengler, Nils Bennewitz, Maren Humanoid Robots Lab University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence The Center for Robotics Bonn Germany
The increasing use of robots in human-centric public spaces such as shopping malls, sidewalks, and hospitals, requires understanding of how pedestrians respond to their presence. However, existing research lacks compr... 详细信息
来源: 评论
Sustainable Grid through Distributed Data Centers Spinning AI Demand for Grid Stabilization and Optimization
arXiv
收藏 引用
arXiv 2025年
作者: Evans, Scott C. Dahlin, Nathan Ndiaye, Ibrahima Ekanayake, Sachini Piyoni Duncan, Alexander Rose, Blake Huang, Hao AI-Machine Learning Robotics Lab United States Electrification Mission United States ECE Department University at Albany SUNY United States
We propose a disruptive paradigm to actively place and schedule TWhrs of parallel AI jobs strategically on the grid, at distributed, grid-aware high performance compute data centers (HPC) capable of using their massiv... 详细信息
来源: 评论
GO-VMP: Global Optimization for View Motion Planning in Fruit Mapping
arXiv
收藏 引用
arXiv 2025年
作者: Jose, Allen Isaac Pan, Sicong Zaenker, Tobias Menon, Rohit Houben, Sebastian Bennewitz, Maren Bonn-Rhein-Sieg University of Applied Sciences Germany Humanoid Robots Lab University of Bonn Germany Fraunhofer Institute for Intelligent Analysis and Information Systems Germany Humanoid Robots Lab University of Bonn Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Germany
Automating labor-intensive tasks such as crop monitoring with robots is essential for enhancing production and conserving resources. However, autonomously monitoring horticulture crops remains challenging due to their... 详细信息
来源: 评论
Sensor Query Schedule and Sensor Noise Covariances for Accuracy-constrained Trajectory Estimation
收藏 引用
IEEE robotics and Automation Letters 2025年 第7期10卷 6983-6990页
作者: Goudar, Abhishek Schoellig, Angela P. Technical University of Munich Learning Systems and Robotics Lab Germany University of Toronto Institute for Aerospace Studies Canada University of Toronto Robotics Institute Munich Institute of Robotics and Machine Intelligence (MIRMI) Vector Institute for Artificial Intelligence Canada
Trajectory estimation involves determining the trajectory of a mobile robot by combining prior knowledge about its dynamic model with noisy observations of its state obtained using sensors. The accuracy of such a proc... 详细信息
来源: 评论
POMDP manipulation via trajectory optimization
POMDP manipulation via trajectory optimization
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015
作者: Vien, Ngo Anh Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart Germany
Efficient object manipulation based only on force feedback typically requires a plan of actively contact-seeking actions to reduce uncertainty over the true environmental model. In principle, that problem could be for... 详细信息
来源: 评论
Touch based POMDP manipulation via sequential submodular optimization  15
Touch based POMDP manipulation via sequential submodular opt...
收藏 引用
15th IEEE RAS International Conference on Humanoid Robots, Humanoids 2015
作者: Vien, Ngo Anh Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart Germany
Exploiting the submodularity of entropy-related objectives has recently led to a series of successes in machine learning and sequential decision making. Its generalized framework, adaptive submodularity, has later bee... 详细信息
来源: 评论
Policy search in reproducing kernel Hilbert space  25
Policy search in reproducing kernel Hilbert space
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Vien, Ngo Anh Englert, Peter Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart Germany
Modeling policies in reproducing kernel Hilbert space (RKHS) renders policy gradient reinforcement learning algorithms non-parametric. As a result, the policies become very flexible and have a rich representational po... 详细信息
来源: 评论
Constrained Bayesian optimization of combined interaction force/task space controllers for manipulations
Constrained Bayesian optimization of combined interaction fo...
收藏 引用
2017 IEEE International Conference on robotics and Automation, ICRA 2017
作者: Dries, Danny Englert, Peter Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart Germany
In this paper, we address the problem of how a robot can optimize parameters of combined interaction force/task space controllers under a success constraint in an active way. To enable the robot to explore its environ... 详细信息
来源: 评论