咨询与建议

限定检索结果

文献类型

  • 82 篇 会议
  • 53 篇 期刊文献

馆藏范围

  • 135 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 85 篇 工学
    • 62 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 43 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 仪器科学与技术
    • 10 篇 生物工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 信息与通信工程
    • 4 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
  • 41 篇 理学
    • 27 篇 数学
    • 11 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 8 篇 物理学
    • 7 篇 系统科学
    • 3 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 14 篇 planning
  • 9 篇 reinforcement le...
  • 9 篇 trajectory
  • 8 篇 robots
  • 6 篇 optimization
  • 5 篇 motion planning
  • 5 篇 robot sensing sy...
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 4 篇 task analysis
  • 4 篇 adversarial mach...
  • 4 篇 kinematics
  • 4 篇 measurement
  • 4 篇 training
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 programming
  • 3 篇 biomechanics
  • 3 篇 computational mo...

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 fraunhofer iosb ...
  • 3 篇 lamarr institute...
  • 3 篇 technische unive...
  • 3 篇 vision and fusio...
  • 3 篇 robotics institu...
  • 2 篇 technical univer...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...
  • 2 篇 institute for co...
  • 2 篇 learning and int...

作者

  • 44 篇 toussaint marc
  • 27 篇 marc toussaint
  • 12 篇 mainprice jim
  • 9 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 schoellig angela...
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 zhou siqi
  • 4 篇 ozgur s. oguz
  • 4 篇 pan sicong
  • 4 篇 angela p. schoel...
  • 4 篇 oh yoojin
  • 4 篇 dawood murad
  • 4 篇 englert peter
  • 3 篇 qin zengchang

语言

  • 130 篇 英文
  • 5 篇 其他
检索条件"机构=The Machine Learning and Robotics Lab"
135 条 记 录,以下是121-130 订阅
排序:
Transcranial magnetic stimulation affects response time in decision-making tasks  4
Transcranial magnetic stimulation affects response time in d...
收藏 引用
4th International Conference "Neurotechnologies and Neurointerfaces", CNN 2022
作者: Grigorev, Nikita Savosenkov, Andrey Udoratina, Anna Kolchina, Anna Maksimenko, Vladimir Gordleeva, Susanna Lobachevsky State University of Nizhny Novgorod Neurotechnology Department Nizhny Novgorod Russia Immanuel Kant Baltic Federal University Center for Neurotechnology and Machine Learning Kaliningrad Russia Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Lobachevsky State University of Nizhny Novgorod Mathematics and Mechanics Department Nizhny Novgorod Russia Neuroscience and Cognitive Technology Lab. Innopolis University Innopolis Russia
In this study, we investigate how excitatory transcranial magnetic stimulation (TMS) can influence decision speed in the task of classifying ambiguous visual patterns. 30 healthy volunteers were divided into 2 groups.... 详细信息
来源: 评论
Anterior TMS Speeds up Responses in Perceptual Decision-making Task  6
Anterior TMS Speeds up Responses in Perceptual Decision-maki...
收藏 引用
6th Scientific School "Dynamics of Complex Networks and their Applications", DCNA 2022
作者: Maksimenko, Vladimir Gordleeva, Susanna Grigorev, Nikita Savosenkov, Andrey Kuc, Alexander Udoratina, Anna Grubov, Vadim Kolchina, Anna Kurkin, Semen Kazantsev, Victor Hramov, Alexander Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Mathematics and Mechanics Department Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia Neurotechnology Department Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russia Neuroscience and Cognitive Technology Lab. Innopolis University Innopolis Russia Nizhny Novgorod Russia
Our preliminary behavioral experiments suggest that the response time decreases when subjects respond to the repeatedly presented visual stimuli. A potential explanation is that the brain preactivates neural ensembles... 详细信息
来源: 评论
Deeper Introspective SLAM: How to Avoid Tracking Failures Over Longer Routes?
Deeper Introspective SLAM: How to Avoid Tracking Failures Ov...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Kanwal Naveed Muhammad Latif Anjum Wajahat Hussain Donghwan Lee Robotics & Machine Intelligence (ROMI) Lab School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology Islamabad Pakistan Reinforcement Learning Research Lab School of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea
Large scale active exploration has recently revealed limitations of visual SLAM’s tracking ability. Active view planning methods based on reinforcement learning have been proposed to improve visual tracking *** this ... 详细信息
来源: 评论
Recurrent neural state estimation in domains with long-term dependencies  20th
Recurrent neural state estimation in domains with long-term ...
收藏 引用
20th European Symposium on Artificial Neural Networks, Computational Intelligence and machine learning, ESANN 2012
作者: Duell, Siegmund Weichbrodt, Lina Hans, Alexander Udluft, Steffen Siemens AG Corporate Technology Intelligent Systems and Control Otto-Hahn-Ring 6 Munich81739 Germany Berlin University of Technology Machine Learning Franklinstr. 28-29 Berlin10587 Germany Otto-von-Guericke-University Magdeburg P.O.Box 4120 Magdeburg39016 Germany Ilmenau University of Technology Neuroinformatics and Cognitive Robotics Lab P.O.Box 100565 Ilmenau98684 Germany
This paper presents a state estimation approach for reinforcement learning (RL) of a partially observable Markov decision process. It is based on a special recurrent neural network architecture, the Markov decision pr... 详细信息
来源: 评论
Guided Decoding for Robot On-line Motion Generation and Adaption
Guided Decoding for Robot On-line Motion Generation and Adap...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Nutan Chen Botond Cseke Elie Aljalbout Alexandros Paraschos Marvin Alles Patrick van der Smagt Machine Learning Research Lab Volkswagen Group Germany Department of Informatics Robotics and Perception Group University of Zurich (UZH) Department of Neuroinformatics UZH and ETH Zurich Switzerland Faculty of Informatics Eötvös Loránd University Budapest Hungary
We present a novel motion generation approach for robot arms, with high degrees of freedom, in complex settings that can adapt online to obstacles or new via points. learning from Demonstration facilitates rapid adapt... 详细信息
来源: 评论
Prior Visual Relationship Reasoning For Visual Question Answering
Prior Visual Relationship Reasoning For Visual Question Answ...
收藏 引用
IEEE International Conference on Image Processing
作者: Zhuoqian Yang Zengchang Qin Jing Yu Tao Wan Robotics Institute Carnegie Mellon University Pittsburgh PA USA Intelligent Computing and Machine Learning Lab School of ASEE Beihang University China Institute of Information Engineering CAS China School of Biological Science and Medical Engineering Beihang University Beijing China
Visual Question Answering (VQA) is a representative task of cross-modal reasoning where an image and a free-form question in natural language are presented and the correct answer needs to be determined using both visu... 详细信息
来源: 评论
Context-Based Meta Reinforcement learning for Robust and Adaptable Peg-in-Hole Assembly Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Shokry, Ahmed Gomaa, Walid Zaenker, Tobias Dawood, Murad Maged, Shady A. Awad, Mohammed I. Bennewitz, Maren Humanoid Robots Lab University of Bonn the Center for Robotics Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany Cyber Physical Systems Lab Egypt Japan University of Science and Technology Alexandria Egypt Faculty of Engineering Alexandria University Alexandria Egypt Mechatronics Department Ain Shams University Cairo Egypt
Peg-in-hole assembly in unknown environments is a challenging task due to onboard sensor errors, which result in uncertainty and variations in task parameters such as the hole position and orientation. Meta Reinforcem... 详细信息
来源: 评论
Preventing Unconstrained CBF Safety Filters Caused by Invalid Relative Degree Assumptions
arXiv
收藏 引用
arXiv 2024年
作者: Brunke, Lukas Zhou, Siqi Schoellig, Angela P. Learning Systems and Robotics Lab The Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich80333 Germany University of Toronto Institute for Aerospace Studies North YorkONM3H 5T6 Canada University of Toronto Robotics Institute TorontoONM5S 1A4 Canada Vector Institute for Artificial Intelligence TorontoONM5G 0C6 Canada
Control barrier function (CBF)-based safety filters are used to certify and modify potentially unsafe control inputs to a system such as those provided by a reinforcement learning agent or a non-expert user. In this c... 详细信息
来源: 评论
Semantically Safe Robot Manipulation: From Semantic Scene Understanding to Motion Safeguards
arXiv
收藏 引用
arXiv 2024年
作者: Brunke, Lukas Zhang, Yanni Römer, Ralf Naimer, Jack Staykov, Nikola Zhou, Siqi Schoellig, Angela P. The Learning Systems and Robotics Lab The Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich80333 Germany University of Toronto Institute for Aerospace Studies North YorkONM3H 5T6 Canada University of Toronto Robotics Institute TorontoONM5S 1A4 Canada Vector Institute for Artificial Intelligence TorontoONM5G 0C6 Canada
Ensuring safe interactions in human-centric environments requires robots to understand and adhere to constraints recognized by humans as "common sense" (e.g., "moving a cup of water above a laptop is un... 详细信息
来源: 评论
Grasp Approach Under Positional Uncertainty Using Compliant Tactile Sensing Modules and Reinforcement learning
Grasp Approach Under Positional Uncertainty Using Compliant ...
收藏 引用
Canadian Conference on Electrical and Computer Engineering (CCECE)
作者: Viral Rasik Galaiya Thiago Eustaquio Alves De Oliveira Xianta Jiang Vinicius Prado Da Fonseca Department of Computer Science Robotics and AI Lab Memorial University of Newfoundland and Labrador St. John’s Canada Department of Computer Science Ubiquitous Computing and Machine Learning Lab Memorial University of Newfoundland and Labrador St. John’s Canada Department of Computer Science Haptics and Robots Research Group Lakehead University Thunder Bay Canada
Object grasping is a complex task that requires high environmental awareness. While vision generally provides highly detailed environmental information, light changes, object transparency, camera resolution, and other... 详细信息
来源: 评论