咨询与建议

限定检索结果

文献类型

  • 84 篇 会议
  • 53 篇 期刊文献

馆藏范围

  • 137 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 84 篇 工学
    • 61 篇 计算机科学与技术...
    • 57 篇 软件工程
    • 41 篇 控制科学与工程
    • 13 篇 仪器科学与技术
    • 12 篇 机械工程
    • 9 篇 生物工程
    • 6 篇 生物医学工程(可授...
    • 5 篇 信息与通信工程
    • 3 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 化学工程与技术
    • 2 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
  • 42 篇 理学
    • 28 篇 数学
    • 12 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 8 篇 物理学
    • 7 篇 系统科学
    • 3 篇 化学
  • 17 篇 管理学
    • 9 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 8 篇 法学
    • 8 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 14 篇 planning
  • 10 篇 reinforcement le...
  • 9 篇 trajectory
  • 8 篇 robots
  • 7 篇 optimization
  • 5 篇 motion planning
  • 5 篇 robot sensing sy...
  • 5 篇 visualization
  • 5 篇 uncertainty
  • 5 篇 robot kinematics
  • 4 篇 task analysis
  • 4 篇 kinematics
  • 4 篇 measurement
  • 4 篇 training
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 programming
  • 3 篇 biomechanics
  • 3 篇 stability analys...
  • 3 篇 adversarial mach...

机构

  • 44 篇 machine learning...
  • 11 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 6 篇 max planck insti...
  • 4 篇 humanoid robots ...
  • 4 篇 max planck insti...
  • 4 篇 max planck insti...
  • 3 篇 machine learning...
  • 3 篇 machine learning...
  • 3 篇 max-planck insti...
  • 3 篇 fraunhofer iosb ...
  • 3 篇 lamarr institute...
  • 3 篇 technische unive...
  • 3 篇 vision and fusio...
  • 3 篇 robotics institu...
  • 2 篇 learning systems...
  • 2 篇 technical univer...
  • 2 篇 lamarr institute...
  • 2 篇 university of to...

作者

  • 44 篇 toussaint marc
  • 27 篇 marc toussaint
  • 12 篇 mainprice jim
  • 8 篇 bennewitz maren
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 danny driess
  • 6 篇 kratzer philipp
  • 5 篇 jim mainprice
  • 5 篇 vien ngo anh
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 angela p. schoel...
  • 4 篇 schoellig angela...
  • 4 篇 oh yoojin
  • 4 篇 englert peter
  • 3 篇 qin zengchang
  • 3 篇 m. toussaint
  • 3 篇 orthey andreas
  • 3 篇 zhou siqi

语言

  • 125 篇 英文
  • 12 篇 其他
检索条件"机构=The Machine Learning and Robotics Lab"
137 条 记 录,以下是11-20 订阅
SimpleMapping: Real-Time Visual-Inertial Dense Mapping with Deep Multi-View Stereo
SimpleMapping: Real-Time Visual-Inertial Dense Mapping with ...
收藏 引用
International Symposium on Mixed and Augmented Reality (ISMAR)
作者: Yingye Xin Xingxing Zuo Dongyue Lu Stefan Leutenegger Smart Robotics Lab Technical University of Munich Germany Munich Center for Machine Learning (MCML) Germany
We present a real-time visual-inertial dense mapping method capable of performing incremental 3D mesh reconstruction with high quality using only sequential monocular images and inertial measurement unit (IMU) reading...
来源: 评论
Control-Barrier-Aided Teleoperation with Visual-Inertial SLAM for Safe MAV Navigation in Complex Environments
Control-Barrier-Aided Teleoperation with Visual-Inertial SLA...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Siqi Zhou Sotiris Papatheodorou Stefan Leutenegger Angela P. Schoellig Learning Systems and Robotics Lab School of Computation Information and Technology Technical University of Munich Munich Institute of Robotics and Machine Intelligence (MIRMI) Smart Robotics Lab School of Computation Information and Technology Technical University of Munich Department of Computing Smart Robotics Lab Imperial College London
In this paper, we consider a Micro Aerial Vehicle (MAV) system teleoperated by a non-expert and introduce a perceptive safety filter that leverages Control Barrier Functions (CBFs) in conjunction with Visual-Inertial ... 详细信息
来源: 评论
Latent Action Priors for Locomotion with Deep Reinforcement learning
arXiv
收藏 引用
arXiv 2024年
作者: Hausdörfer, Oliver von Rohr, Alexander Lefort, Éric Schoellig, Angela P. The Technical University of Munich Germany TUM School of Computation Information and Technology Department of Computer Engineering Learning Systems and Robotics Lab Germany Munich Institute of Robotics and Machine Intelligence Germany
Deep Reinforcement learning (DRL) enables robots to learn complex behaviors through interaction with the environment. However, due to the unrestricted nature of the learning algorithms, the resulting solutions are oft... 详细信息
来源: 评论
Relative Representations: Topological and Geometric Perspectives
arXiv
收藏 引用
arXiv 2024年
作者: García-Castellanos, Alejandro Marchetti, Giovanni Luca Kragic, Danica Scolamiero, Martina Amsterdam Machine Learning Lab University of Amsterdam Netherlands Department of Mathematics KTH Royal Institute of Technology Sweden Division of Robotics Perception and Learning KTH Royal Institute of Technology Sweden
Relative representations are an established approach to zero-shot model stitching, consisting of a non-trainable transformation of the latent space of a deep neural network. Based on insights of topological and geomet... 详细信息
来源: 评论
Asymptotically Optimal Belief Space Planning in Discrete Partially-Observable Domains
arXiv
收藏 引用
arXiv 2023年
作者: Freund, Janis Eric Phiquepal, Camille Orthey, Andreas Toussaint, Marc Technical University of Berlin Germany Realtime Robotics Inc. BostonMA United States Machine Learning & Robotics Lab University of Stuttgart Germany
Robots often have to operate in discrete partially observable worlds, where the states of world are only observable at runtime. To react to different world states, robots need contingencies. However, computing conting... 详细信息
来源: 评论
Sustainable Grid through Distributed Data Centers : Spinning AI Demand for Grid Stabilization and Optimization
Sustainable Grid through Distributed Data Centers : Spinning...
收藏 引用
Conference on Technologies for Sustainability (Sustech)
作者: Scott C Evans Sachini Piyoni Ekanayake Alexander Duncan Blake Rose Hao Huang Ibrahima Ndiaye Nathan Dahlin AI Machine Learning Robotics Lab GE Vernova Advanced Research Center Electrification Mission GE Vernova Advanced Research Center ECE Department University at Albany
We propose a disruptive paradigm to actively place and schedule TWhrs of parallel AI jobs strategically on the grid, at distributed, grid-aware high performance compute data centers (HPC) capable of using their massiv... 详细信息
来源: 评论
Multi-Step Model Predictive Safety Filters: Reducing Chattering by Increasing the Prediction Horizon
Multi-Step Model Predictive Safety Filters: Reducing Chatter...
收藏 引用
IEEE Conference on Decision and Control
作者: Federico Pizarro Bejarano Lukas Brunke Angela P. Schoellig the Learning Systems and Robotics Lab University of Toronto Robotics Institute and the Vector Institute for Artificial Intelligence Toronto Canada Technical University of Munich and the Munich Institute for Robotics and Machine Intelligence (MIRMI) Germany
learning-based controllers have demonstrated su-perior performance compared to classical controllers in various tasks. However, providing safety guarantees is not trivial. Safety, the satisfaction of state and input c...
来源: 评论
Balanced resonate-and-fire neurons  24
Balanced resonate-and-fire neurons
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Saya Higuchi Sebastian Kairat Sander M. Bohté Sebastian Otte Adaptive AI Lab Institute of Robotics and Cognitive Systems University of Lübeck Germany Machine Learning Group Centrum Wiskunde & Informatica (CWI) Amsterdam The Netherlands
The resonate-and-fire (RF) neuron, introduced over two decades ago, is a simple, efficient, yet biologically plausible spiking neuron model, which can extract frequency patterns within the time domain due to its reson...
来源: 评论
ST-RRT*: Asymptotically-Optimal Bidirectional Motion Planning through Space-Time
arXiv
收藏 引用
arXiv 2022年
作者: Grothe, Francesco Hartmann, Valentin N. Orthey, Andreas Toussaint, Marc Learning and Intelligent Systems Group TU Berlin Germany Machine Learning & Robotics Lab University of Stuttgart Germany
We present a motion planner for planning through space-time with dynamic obstacles, velocity constraints, and unknown arrival time. Our algorithm, Space-Time RRT* (ST-RRT*), is a probabilistically complete, bidirectio... 详细信息
来源: 评论
Physically-Consistent Parameter Identification of Robots in Contact
arXiv
收藏 引用
arXiv 2024年
作者: Khorshidi, Shahram Dawood, Murad Nederkorn, Benno Bennewitz, Maren Khadiv, Majid Humanoid Robots Lab University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence the Center for Robotics Bonn Germany Roboverse Reply Munich Germany Germany
Accurate inertial parameter identification is crucial for the simulation and control of robots encountering intermittent contacts with the environment. Classically, robots’ inertial parameters are obtained from CAD m... 详细信息
来源: 评论